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ADDENDUM TO  

Curriculum Vitae of David W. K. Yeung 

 

Mathematical Formulae Developed  

 

 

One cannot escape the feeling that these  

mathematical formulas have an independent 

 existence and an intelligence of their own,  

that they are wiser than we are, wiser even than 

 their discoverers...  ~Heinrich Hertz (1847-1894) 

 

 

Part A: Control Theory 

 

 

         Theorem A1. (Random-horizon Bellman Equation) 

A set of strategies )({ xu kk = , for }k  provides an optimal solution to the control 

Problem A1 (see below) if there exist functions ),( xkV , for k , such that the 

following recursive relations are satisfied: 
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   Reference:  D.W.K. Yeung and L. A. Petrosyan: Subgame Consistent Cooperative 

Solution of Dynamic Games with Random Horizon. Journal of Optimization Theory 

and Applications, Vol. 150, pp78-97, 2011.                                          

 

                  

 

     Theorem A2 (Random-horizon Stochastic Bellman Equation under  

Uncertain Future Payoff Structures) 

A set of strategies =
*)(

{ k
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 , for },,2,1{ kk    and }},,2,1{ Tk   

provides an optimal solution to the stochastic control Problem A2 if there exist 

functions ),(
)(

xkV k
, for },,2,1{ Tk  , such that the following recursive relations 

are satisfied: 
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 Reference: D.W.K. Yeung and L.A. Petrosyan: Subgame Consistent Cooperative 

Solutions For Randomly Furcating Stochastic Dynamic Games With Uncertain 

Horizon. International Game Theory Review, Vol. 16, 2014, pp.1440012.01-
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Theorem A.3. Dynamic Optimization Technique for Durable Controls 

 

Let );,( −kuxkW  be the maximal value of the payoff of the problem of maximizing 

  
=

−

T

k

kkkk uuxg
1

);,( );( )1(11 −++++ TTT uxq     

subject to the dynamics );,(1 −+ = kkkkk uuxfx ,         
0

11 xx = ,              

where −ku  is the set of controls which are executed before stage k  but still in effect in 

stage k . 

The function );,( −kuxkW  satisfies the following system of recursive equations:  
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for },,2,1{ Tk  .                              ■ 

References: D.W.K. Yeung, L.A. Petrosyan (2020): Cooperative Dynamic Games 

with Durable Controls: Theory and Application, Dynamic Games and Applications,  

Doi:10.1007/s13235-019-00336-w. 

9(2), 550-567, 2019, https://doi.org/10.1007/s13235-018-0266-6. 

 

D.W.K. Yeung, L.A. Petrosyan (2019): Cooperative Dynamic Games with Control 

Lags, Dynamic Games and Applications, 9(2), 550-567,  

https://doi.org/10.1007/s13235-018-0266-6.                                                                                      

 

                                                                                                     

                                                                                                    

                                                                  

 

Part B: Game Theory 

 

 

   Theorem B1. (Random-horizon (Hamilton-Jacobi-Bellman) HJB Equations) 

A set of strategies )({ xi

k , for Tk  and }Ni  provides a feedback Nash 

equilibrium solution to the game Problem B1 (see below) if there exist functions  

),( xkV i , for Tk   and Ni , such that the following recursive relations are 

satisfied: 
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Reference:  D.W.K. Yeung and L. A. Petrosyan: Subgame Consistent Cooperative 

Solution of Dynamic Games with Random Horizon. Journal of Optimization Theory 

and Applications, Vol. 150, pp78-97, 2011.                                                                              

 

      

                                                                                              

 

           Theorem B2. (Random-horizon Stochastic HJB Equations under  
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Uncertain Future Payoff Structures) 

 

A set of strategies =*{ iu )(
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constitutes a Nash equilibrium solution to the game Problem B2 (see below) if there 
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 Reference: D.W.K. Yeung and L.A. Petrosyan: Subgame Consistent Cooperative 

Solutions For Randomly Furcating Stochastic Dynamic Games With Uncertain 
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        Theorem B4. (Nontransferable Individual Payoff in Continuous-time 

Stochastic Dynamic Cooperation) 

 

If there exists a set of controls  ),()( )()( xttu ii

 = , for Ni   and value functions 

),()( xtW  RRTt n →],[: 0  which provide an optimal solution to the stochastic 

control Problem B4 (see below), then the individual player’s payoff    
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References: D.W.K. Yeung: Nontransferable Individual Payoff Functions under 

Stochastic Dynamic Cooperation, International Game Theory Review, Vol. 6, 2004, 

pp. 281-289. 

D.W.K. Yeung: Nontransferable Individual Payoffs in Cooperative Stochastic 

Dynamic Games, International Journal of Algebra, Vol. 7, 2013, pp. 597-606.                                                                      

 

 

Theorem B5. (Subgame-consistent Payoff Distribution Procedure (PDP) for 

Discrete-time Stochastic Dynamic Cooperation) 

 

Consider the cooperative stochastic dynamic game Problem B5 (see below) in which 

the players agree to maximize their joint expected payoff and share the cooperative 

gain according to the imputation ),( *

k

i xk  for player Ni  in stage k  along the 

cooperative trajectory  T
kkx
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References: D.W.K. Yeung and L. A. Petrosyan: Subgame Consistent Solutions for 

Cooperative Stochastic Dynamic Games. Journal of Optimization Theory and 

Applications, Vol. 145, 2010, pp. 579-596.       

 

Problem B5: Corresponding Problem of Theorem B5.  

Consider the general −T stage −n person discrete-time cooperative stochastic 

dynamic game with initial state 0x . The state space of the game is 
mRX   and the 

state dynamics of the game is characterized by the stochastic difference equation: 
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where r  is the discount rate and 
T

E  ,,, 21   is the expectation operation with respect to 

the statistics of 1 , 2 , T, .  

 The players agree to maximize their joint expected payoff and share the 

cooperative gain according to the imputation ),( *
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 (ii) Share the total cooperative proportional to the players’ noncooperative payoffs, 
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Theorem B6. (Subgame-consistent PDP for Continuous-time Stochastic 

Dynamic Cooperation) 
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Consider the cooperative stochastic differential game Problem B6 (see below) in 

which the players agree to maximize their joint expected payoff and share the 

cooperative gain according to the imputation ),( *)(

s

is xs  in current value at time s  for 

player Ni  in time ],[ 0 Tts  along the cooperative trajectory  T
tssx
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References: D.W.K. Yeung and L. Petrosyan: Subgame Consistent Cooperative 

Solution in Stochastic Differential Games,  Journal of Optimization Theory and 

Applications, Vol. 120, 2004, pp.651-666.  

D.W.K. Yeung and L. A. Petrosyan: Subgame Consistent Economic Optimization: An 

Advanced Cooperative Dynamic Game Analysis, Boston: Birkhäuser. ISBN 978-0-

8176-8261-3, 395pp, 2012.                                                                             

 

Problem B6: Corresponding Problem of Theorem B6.  

 Consider the  n-person cooperative stochastic differential game in which player i  

seeks to maximize its expected payoffs: 
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Theorem B7. (Subgame-consistent PDP for Random-horizon 

Dynamic Cooperation) 

 

Consider the random-horizon cooperative dynamic game Problem 7 (see below) in 

which the players agree to maximize their joint payoff and share the cooperative gain 

according to the imputation ),( *

 xi  for player Ni  in stage    along the 
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References:  D.W.K. Yeung and L. A. Petrosyan: Subgame Consistent Cooperative 

Solution of Dynamic Games with Random Horizon. Journal of Optimization Theory 
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Problem B7: Corresponding Problem of Theorem B7.  

Consider the −n person cooperative dynamic game with  T̂  stages where T̂  is a 

random variable with range },,2,1{ T  and corresponding probabilities 
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 The state space of the game is 
mRX   and the state dynamics of the game is 

characterized by the difference equation: 
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The players agree to maximize their joint expected payoff and share the cooperative 

gain according to the imputation ),( k
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cooperative trajectory  T
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Theorem B8. (Subgame-consistent PDP for Discrete-time Stochastic 

Dynamic Cooperation under Uncertainty in Payoff Structures) 
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Consider the randomly furcating cooperative stochastic dynamic game Problem B8 

(see below) in which the players agree to maximize their joint expected payoff and 

share the cooperative gain according to the imputation 
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Reference: D.W.K. Yeung and L. A. Petrosyan: Subgame-consistent Cooperative 

Solutions in Randomly Furcating Stochastic Dynamic Games. Mathematical and 

Computer Modelling, Vol 57, pp.976–991, 2013. 

 

Problem B8: Corresponding Problem of Theorem B8.  

Consider the −T stage −n person randomly furcating cooperative stochastic dynamic 

game with initial state 0x . The state space of the game is 
mRX   and the state 

dynamics of the game is characterized by the stochastic difference equation: 
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where imii

k RUu   is the control vector of player i  at stage k , Xxk   is the state, 

and k  is a sequence of statistically independent random variables.  

The payoff of player i  at stage k  is );,,,,( 21

k

n

kkkk

i

k uuuxg   which is affected 

by a random variable k . In particular, k  for },,2,1{ Tk   are independent discrete 

random variables with range },,,{ 21 k

kkk

   and corresponding probabilities 

},,,{ 21 k

kkk

  , where k  is a positive integer for  },,2,1{ Tk  . In stage 1, it is 

known that 1  equals 1

1  with probability 11

1 = . 

The objective that player i  seeks to maximize is 







TT
E  ,,,;,,, 2121  );,,,,( 21

1

k

n

kkkk

i

k

T

k

uuuxg 
=

)( 1++ T

i xq




,  

   for Nni  },,2,1{  ,                                                                   

where 
TT

E  ,,,;,,, 2121   is the expectation operation with respect to the random 

variables 1 , 2 , T,  and T ,,, 21  , and )( 1+T

i xq  is a terminal payment given at 

stage 1+T . The payoffs of the players are transferable.  

 

 

Theorem B9. Subgame-consistent PDP for Continuous-time Stochastic 

Dynamic Cooperation under Uncertainty in Payoff Structures 

 

Consider the randomly furcating cooperative stochastic dynamic game Problem B.9 

(see below) in which the players agree to maximize their joint expected payoff and 

share the cooperative gain according to the imputation ),( *)]([

t

ki
xt

k

ka 
 , for Ni , 

],[ 1+ kk tt , ],[ 1+ ktt  , }1,,2,1,0{ − mk  , and }...,,,{ 21  h

ak
. A Payoff 

Distribution Procedure (PDP) with a payment equaling   
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),( *)]([
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for Ni  and },,2,1{ mk  , 

given to player i  at time ],[ 1+ kk tt  contingent upon k

ak
 }...,,,{ 21  has 

occurred at time kt , leads to the realization of the imputation ),( *)]([

t

ki
xt

k

ka 
 , for 

Ni , ],[ 1+ kk tt , ],[ 1+ ktt  , }1,,2,1,0{ − mk  , and }...,,,{ 21  h

ak
.  

where  
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k
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= , for ),[ 1+ kk ttt , 

}1,,2,1,0{ − mk   and }Ni , contingent upon the events m

m
 and k

k
  is a set of 

controls that provides a group optimal solution for the game Problem 11 yielding 

continuously differentiable functions RRTtxtW m

mm

m →  ],[:),(
)]([

 and  
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partial differential equations: 
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,     for }1,,2,1,0{ − mk  .              ■ 

References: L. A. Petrosyan and D.W.K. Yeung: Subgame-consistent Cooperative 

Solutions in Randomly-furcating Stochastic Differential Games, International Journal 

of Mathematical and Computer Modelling (Special Issue on Lyapunov’s  Methods in 

Stability and Control), Vol. 45, June 2007, pp.1294-1307.     

L. A. Petrosyan and D.W.K. Yeung: Subgame Consistent Cooperation – A 

Comprehensive Treaties, Springer 2016.                                                                          

 

Problem B9: Corresponding Problem of Theorem B9.  

Consider a class of randomly furcating cooperative stochastic differential game in 

which there are n  players. The game interval is  T] ,[ 0t . When the game commences 

at 0t , the payoff structures of the players in the interval ),[ 10 tt  are known. In future 

instants of time ( )mktk ,,2,1 = , where 0t  Ttm 1+mt , the payoff structures in 

the time interval ),[ 1+kk tt  are affected by a series of random events k . In particular, 

k  for },,2,1{ mk  , are independent and identically distributed random variables 

with range }...,,,{ 21   and corresponding probabilities }...,,,{ 21  . At time T  

a terminal value ))(( Txq i  will be given to player i . Player i  seeks to maximize the 

expected payoff: 
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for Nni  },,2,1{  ,              
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where RXsx )(  is a vector of state variables, }...,,,{ 21  h

ak
 for 

},,2,1{ mk  , 
0a = 0

0  is known at time 0t , r  is the discount rate, i

i Uu   is the 

control of player i ,  and 
0t

E  denotes the expectation operator performed at time 0t . 

The payoffs of the players are transferable.  

The state dynamics of the game is characterized by the vector-valued 

stochastic differential equations: 

),()](,[)](,),(),(),(,[)( 21 sdzsxsdssusususxsfsdx n +=          

,)( 00 xtx =                               

where )](,[ sxs  is a    matrix and )(sz  is a  -dimensional Wiener process and 

the initial state x0 is given. Let )](,[ sxs = )](,[ sxs Tsxs )](,[  denote the 

covariance matrix with its element in row h  and column   denoted by )](,[ sxsh . 
compRUu ii   is the control vector of player i , for Ni . 

 

 

Theorem B10. (Subgame-consistent PDP for Random-horizon Stochastic 

Dynamic Cooperation under Uncertainty in Payoff Structures) 

 

Consider the uncertain horizon randomly furcating cooperative stochastic dynamic 

game Problem B10 (see below) in which the players agree to maximize their joint 

expected payoff and share the cooperative gain according to the imputation 

),( *)(

kxkk )],(,),,(),,([ *)(*2)(*1)(

k

n

kk xkxkxk kkk   =  along the cooperative 

trajectory given that k

k

  has occurred in stage k , for  },,2,1{ kk    and 

},,2,1{ Tk  . A Payoff Distribution Procedure (PDP) with a payment equaling  
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,            

 

given to player Ni  at stage },,2,1{ Tk   if k

k

 },,,{ 21 k

kkk

   occurs would 

lead to the realization of the imputation:  

),( *)(

kxkk )],(,),,(),,([ *)(*2)(*1)(

k

n

kk xkxkxk kkk   = , for  },,2,1{ kk    and 

},,2,1{ Tk  ;  

where  

)](,),(),([)( **)(**2)(**1)(**)(

k

n

kkkkkkk xxxx kkkk   = , for k  and Ni  is a set of 

controls that provides a group optimal solution to the Problem B10 yielding functions 

),(
)(

xtW t
, for },,2,1{ tt    and },,2,1{ Tt  , such that the following recursive 

relations are satisfied: 
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for  }1,,2,1{ − T .                                                                          ■ 

Reference: D.W.K. Yeung and L.A. Petrosyan: Subgame Consistent Cooperative 

Solutions For Randomly Furcating Stochastic Dynamic Games With Uncertain 

Horizon. International Game Theory Review, Vol. 16, pp.1440012.01-1440012.29, 

2014.                                                                           

 

Problem B10: Corresponding Problem of Theorem B10.  

   Consider the −T̂ stage uncertain horizon randomly furcating cooperative stochastic 

dynamic game problem where T̂  is a random variable with range },,2,1{ T  and 

corresponding probabilities },,,{ 21 T  . Conditional upon the reaching of stage 

 , the probability of the game would last up to stages ,1, + T,  becomes 

respectively 


=

T










,


=

+

T









 1


=

T

T






,, .                                          (1.1) 

The state space of the game is 
mRX   and the state dynamics of the game is 

characterized by the stochastic difference equation: 

 ),,,,( 21

1

n

kkkkkk uuuxfx =+ k+ ,     (1.2) 

for },,2,1{ Tk   and 0

1 xx = ,  

where imii

k RUu   is the control vector of player i  at stage k , Xxk   is the state, 

and k  is a sequence of statistically independent random variables.  

 The payoff of player i  at stage k  is ];,,,,[ 21

k

n

kkkk

i

k uuuxg   which is affected 

by a random variable k . In particular, k  for },,2,1{ Tk   are independent random 

variables with range },,,{ 21 k

kkk

   and corresponding probabilities },,,{ 21 k

kkk

  . 

In stage 1, it is known that 1  equals 1

1  with probability 11

1 = . When the game ends 

after stage T̂ ,  a terminal payment )(
1ˆ1ˆ ++ T

i

T
xq  will be given to player i  in stage 1ˆ +T . 

The objective that player i  seeks to maximize is 
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,  

 for Nni  },,2,1{  ,                                                                   

where 
TT

E  ,,,;,,, 2121   is the expectation operation with respect to the random 

variables 1 , 2 , T,  and T ,,, 21  . Since there is no uncertainty in the payoff 

structure in stage 1+T , we denote 11 =+T , 1

11
1

++ =+

TT
T    with probability 

11

11
1 == ++
+

TT
T   for notational convenience.  

 

 

Theorem B11. (Subgame-consistent Solution Mechanism for Dynamic 

Cooperation under Non-transferrable Payoffs (NTU) ) 

Consider the non-transferrable payoff/utility (NTU) cooperative dynamic game 

Problem B11 (see below) in which the players agree to use a set of payoff weights 

)ˆ,,ˆ,ˆ(ˆ{ 21 n

kkkk  = , for }k  for joint maximization of the weighted joint payoff 

so that the imputation ),( *

k

i xk  for player Ni  in stage k  along the cooperative 

trajectory  T
kkx

1

*

=
 can be achieved.  

 A set of payoff weights )ˆ,,ˆ,ˆ(ˆ{ 21 n

kkkk  = , for }k  and a set of 

strategies )({
)ˆ(

x
i

k
k

 , for k  and }Ni  provides a subgame consistent solution to 

the NTU cooperative dynamic game Problem B11 if there exist functions ),(
)ˆ(

xkW k
 

and ),(
)ˆ(

xkW
ik , for Ni k , which satisfy the following recursive relations: 
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xxxxg
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 ,1[
)ˆ( 1 ++ + kW
ik ))](,),(),(,(

)ˆ(2)ˆ(1)ˆ(
xxxxf

n
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kkk    ,  

for Ni  and  k ;                                              

and imputation ),( *

k

i xk  for player Ni  in stage k ,  

where the value function ),(
)ˆ(

xkW
ik  is the payoff for player Ni  in stage k  

under cooperation. ■ 

Reference:  D.W.K. Yeung and L.A. Petrosyan: Subgame Consistent Cooperative 

Solution for NTU Dynamic Games via Variable Weights, forthcoming in Automatica, 

2015.                                                                          

 

Problem B11: Corresponding Problem of Theorem B11.  

Consider the general −T stage −n person dynamic game with initial state 0

1x . The 

state space of the game is 
mRX   and the state dynamics of the game is characterized 

by the difference equation: 

    ),,,,( 21

1

n

kkkkkk uuuxfx =+ ,                   
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for  },,2,1{ Tk   and 0

11 xx = ,  

where imi

k Ru   is the control vector of player i  at stage k , and Xxk   is the state of 

the game. The payoff that player i  seeks to maximize is  

),,,,( 21

1

n

kkkk

i

k

T

k

uuuxg 
=

)( 1++ T

i xq ,                     

for Nni  },,2,1{  , 

where )(
1+T

i xq  is the terminal payoff that player i  will received in stage 1+T .  

 The payoffs of the players are not transferable. The players agree to use a set 

of payoff weights )ˆ,,ˆ,ˆ(ˆ{ 21 n

kkkk  = , for }k  for joint maximization of the 

weighted joint payoff so that the imputation ),( *

k

i xk  for player Ni  in stage k  

along the cooperative trajectory  T
kkx

1

*

=
 can be achieved.  

 

 

Theorem B12. (Subgame-consistent Solution Mechanism for Stochastic Dynamic 

Cooperation under Non-transferrable Payoffs (NTU) ) 

Consider the non-transferrable payoff/utility (NTU) cooperative stochastic dynamic 

game Problem B12 (see below) in which the players agree to use a set of payoff 

weights )ˆ,,ˆ,ˆ(ˆ{ 21 n

kkkk  = , for }k  for joint maximization of the expected 

weighted joint payoff so that the imputation ),( *

k

i xk  for player Ni  in stage k  

along the cooperative trajectory  T
kkx

1

*

=
 can be achieved.  

 A set of payoff weights )ˆ,,ˆ,ˆ(ˆ{ 21 n

kkkk  = , for }k  and a set of 

strategies )({
)ˆ(

x
i

k
k

 , for k  and }Ni  provides a subgame consistent solution to 

the NTU cooperative dynamic game Problem B12 if there exist functions ),(
)ˆ(

xkW k
 

and ),(
)ˆ(

xkW
ik , for Ni k , which satisfy the following recursive relations: 
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,  

for Ni  and  k ;                                              

and imputation ),( *

k

i xk  for player Ni  in stage k ,   

 

where the value function ),(
)ˆ(

xkW
ik  is the expected payoff for player Ni  in stage 

k  under cooperation.                                               ■ 
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Reference: D.W.K. Yeung and L.A. Petrosyan: On Subgame Consistent Solution for 

NTU Cooperative Stochastic Dynamic Games, paper presented at European Meeting 

on Game Theory (SING11-GTM2015) at St Petersburg, July 8-10, 2015.                                                              

 

Problem B12: Corresponding Problem of Theorem B12.  

Consider the NTU cooperative stochastic dynamic game with initial state 0

1x . The 

state space of the game is mRX   and the state dynamics of the game is characterized 

by the stochastic difference equation: 

kkk

n

kkkkkk xGuuuxfx )(),,,,( 21

1 +=+  ,                     

for  },,2,1{ Tk   and 0

11 xx = ,  

where imi

k Ru   is the control vector of player i  at stage k , and Xxk   is the state of 

the game and k  is a set of independent random variable. The payoff that player i  

seeks to maximize is  





T
E  ,,, 21  )(],,,,,[ 11

21

1

++

=

+ T

ini
T

xqxuuuxg 








,           

for Nni  },,2,1{  ,         

where )( 1+T

i xq  is the terminal payoff that player i  will received in stage 1+T , and 

T
E  ,,, 21   is the expectation operation with respect to the statistics of 1 , 2 , T, .  

 The payoffs of the players are not transferable. The payoffs of the players are 

not transferable. The players agree to use a set of payoff weights 

)ˆ,,ˆ,ˆ(ˆ{ 21 n

kkkk  = , for }k  for joint maximization of the expected weighted 

joint payoff so that the imputation ),( *

k

i xk  for player Ni  in stage k  along the 

cooperative trajectory  T
kkx

1

*

=
 can be achieved.  

 

Theorem B13. Hamilton-Jacobi-Bellman Equations for Dynamic Games with 

Durable Controls 

Let );,(
**

−k

i uxkV  be the feedback Nash equilibrium payoff of player i  in the 

noncooperative game (3.1)-(3.2), then the function );,(
**

−k

i uxkV  satisfies the following 

recursive equations: 
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i uuuuuuxfkV
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,     

for },,2,1{ Tk   and Ni , 

where ),,,( **2**1**** n

kkkk uuuu =  are the corresponding Nash equilibrium strategies, 
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)(** i
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kkk uuuuu −

+

−

−

−−−=  , and  

i

kku **

)1( −−−  are the elements in the intersection of the set of controls i

ku **

)1( −−  and the set 

of controls i

ku **

− .      ■     

References: D.W.K. Yeung, L.A. Petrosyan (2020): Cooperative Dynamic Games 

with Durable Controls: Theory and Application, Dynamic Games and Applications,  

Doi:10.1007/s13235-019-00336-w. 

9(2), 550-567, 2019, https://doi.org/10.1007/s13235-018-0266-6. 

D.W.K. Yeung, L.A. Petrosyan (2019): Cooperative Dynamic Games with Control 

Lags, Dynamic Games and Applications, 9(2), 550-567,  

https://doi.org/10.1007/s13235-018-0266-6.                                          

 

 

Theorem B14. Subgame-consistent PDP for Cooperative Dynamic Games with 

Durable Controls 

The agreed-upon imputation );,(
**

−kk uxk , for },,2,1{ Tk   along the cooperative 

trajectory  T
kkx

1

*

=
, can be realized by a payment    

);(
**

−kk

i

k uxB );,(
**

−



= kk

i uxk ,1+



− ki );,(

***

−kkkk uuxf 







−+

*

)1(; ku      

given to player Ni  at stage },,2,1{ Tk  .                           ■                             

References: D.W.K. Yeung, L.A. Petrosyan (2020): Cooperative Dynamic Games 

with Durable Controls: Theory and Application, Dynamic Games and Applications,  

Doi:10.1007/s13235-019-00336-w. 

9(2), 550-567, 2019, https://doi.org/10.1007/s13235-018-0266-6. 

 

D.W.K. Yeung, L.A. Petrosyan (2019): Cooperative Dynamic Games with Control 

Lags, Dynamic Games and Applications, 9(2), 550-567,  

https://doi.org/10.1007/s13235-018-0266-6.                                                                           

 

 

 

 

    

 

Part C: Identities and Equations in Economics 

 

C1.  Inter-temporal Roy’s Identity 
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or in an alternative form 
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for  },,2,1{ T , },,1,{ Th  +  and },,2,1{ hnj  , 

where  
0

 WW = , 

0

1+W 1

0 ))(1( ++−+=  YpWr  , 

0

2+W 211

0

1 ))(1( ++++ +−+=  YpWr  , 

                                               
0

hW ))(1( 11

0

1 −−− −+= hhh pWr  hY+ .                                       ■ 

References: D.W.K. Yeung: Dynamic Consumer Theory – A Premier Treatise with 

Stochastic Dynamic Slutsky Equations, Nova Science Publishers, New York, 2015.  
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Problem C1: Corresponding Problem of Theorem C1.  

The inter-temporal Roy’s identity is derived from the consumer problem in which the 

consumer maximizes his inter-temporal utility  
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C2.  Inter-temporal Roy’s Identity under Stochastic Income 
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Problem C2: Corresponding Problem of Theorem C2.  

The inter-temporal Roy’s identity under stochastic income is derived from the 

consumer problem in which the consumer maximizes his expected inter-temporal 

utility  
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subject to the budget constraint characterized by the stochastic wealth dynamics 
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k  is the random income that the consumer will receive in period k ; and k , for 

},,2{ Tk  , is a set of statistically independent random variables, and 
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the expectation operation with respect to the statistics of 2 , 3 , T, . The random 

variable k  has a non-negative range },,,{ 21 km
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probabilities },,,{ 21 km
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C3.  Inter-temporal Roy’s Identity under Stochastic Life-span 

 

j

h

T

p

pppWv



 + ),,,,( 1

0 


0

1

0 ),,,,(




 

W

pppWv T






+
 

             ),,,,()1( 1

0)(

Thhh

j

h

h pppWr 
+

−−+−  ;           

or in an alternatively form: 

j

h

T

p

pppWv



 + ),,,,( 1

0 


0

1

0

1

),,,,(

h

Thhh

h

h

W

pppWv






+

+


  

              





=

=
−

T

T

h













),,,,( 1

0

Thhh

j

h pppW + ;                            

for  },,2,1{ T },,1,{ Th  +  and },,2,1{ hnj  ,     

where  
0

 WW = , 

0

1+W 1

0 ))(1( ++−+=  YpWr  , 
0

2+W 211

0

1 ))(1( ++++ +−+=  YpWr  , 

                                               

            0

hW ))(1( 11

0

1 −−− −+= hhh pWr  hY+ .                        ■ 

References: D.W.K. Yeung: Dynamic Consumer Theory – A Premier Treatise with 

Stochastic Dynamic Slutsky Equations, Nova Science Publishers, New York, 2015.  

D.W.K. Yeung: Optimal Consumption under Uncertainties: Random Horizon 

Stochastic Dynamic Roy’s Identity and Slutsky Equation, Applied Mathematics, Vol.5, 

2014, pp.263-284.                                                                         

 

Problem C3: Corresponding Problem of Theorem C3.  

The inter-temporal Roy’s identity under stochastic life-span is derived from the 

consumer problem in which the consumer’s life-span involves T̂  periods where T̂  is 

a random variable with range },,2,1{ T  and corresponding probabilities 

},,,{ 21 T  . Conditional upon the reaching of period  , the probability of the 

consumer’s life-span would last up to periods ,1, + T,  becomes respectively 
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The consumer maximizes his expected inter-temporal utility  
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where  

r  is the interest rate, kY  is the income that the consumer will receive in period k . 

 

 

C4. Inter-temporal Roy’s Identity under Stochastic Income and Life-span 
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Problem C4: Corresponding Problem of Theorem C4.  

The inter-temporal Roy’s identity under stochastic income and life-span is derived 

from the consumer problem in which the consumer’s life-span involves T̂  periods 

where T̂  is a random variable with range },,2,1{ T  and corresponding probabilities 

},,,{ 21 T  . Conditional upon the reaching of period  , the probability of the 

consumer’s life-span would last up to periods ,1, + T,  becomes respectively 

                      


=

T










,


=

+

T









 1


=

T

T






,, .            

The consumer maximizes his expected inter-temporal utility  
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where    

k  is the random income that the consumer will receive in period k ; and k , for 

},,2{ Tk  , is a set of statistically independent random variables, and 
T

E  ,,, 21   is 

the expectation operation with respect to the statistics of 2 , 3 , T, . The random 

variable k  has a non-negative range },,,{ 21 km

kkk    with corresponding 

probabilities },,,{ 21 km

kkk   , for },,2{ Tk  .  

 

C5.  Inter-temporal Roy’s Identity under Stochastic Preferences 

 

jp

pWv




 



 ),( 0)(

0

0)(
),(




 

W

pWv








),( 0)(
pW

j


− , for },,2,1{  nj ,     

k

hp

pWv



 ),( 0)(


 

0

0)(
),(




 

W

pWv








 












 
+

+

+

+

+

+

=

+

=

+−
2

2

2

1

1

1

1

2

1

1

mm







   


=

h

h

h

m

h

1

 h

1+
11

11 ),(
)(

−+

−+





h

hh

h

h

h

W

pWv












),( 11)(
pW hh

h

k

h
−+   )()1( −−+ hr  





 

==

+

=

+

+

+

+

+

+

+

h

h

h

m

h

mm

11

2

1

1

2

2

2

1

1

1











  













h

1+ 








−+

−+

11

11 ),(
)(

h

hh

h

h

h

W

pWv












;                 

or in an alternative form  

0

0)(
),(




 

W

pWv






− 
+

+

+

=

+

1

1

1

1

1









m



 







+

+

+

=

+

2

2

2

1

2

m



   

           
+

+ =

1

1 1

h

h

h

m

h



 1

1

+

+

h


11

11 ),(
)(

−+

−+





h

hh

h

h

h

W

pWv












−+ hr)1( ; 

 



 24 

for  },,2,1{ T , },,2,1{ Th  ++ , },,2,1{ hnk   and },,2,1{   m ,           

where  
0

 WW = , 






1+W 1

0)(0 )],()[1( ++−+= 
 YpWpWr

 ,  

1

2
+

+





W )],()[1( 1

)(

111
1 pWpWr 


  ++++

+−+= 2++ Y ,  

        if preference is )( 1

)(1 1

+

+ +


  xu

  in period 1+ ; 

21

3
++

+





W )],()[1( 111

2

)(

222 pWpWr +++

++++ −+= 


  3++ Y ,  

       if preference is )( 2

)(2 2

+

+ +


  xu

  in period 2+ ; 

                                                                          
11, −+ T

TW
  )]()[1( 21121

1

)(

111
−+−−+

−−−− −+= TTT

TTTT WpWr
   

TY+ ;    

                if preference is )( 1

)(1 2

−

− +

T

T
xu   in period 1−T ; 

T

TW
  1,

1
+

+ )]()[1( 1111
)(

−+−+ −+= TT

TTTT WpWr
    01 =+ +TY .            ■    

References: D.W.K. Yeung: Dynamic Consumer Theory – A Premier Treatise with 

Stochastic Dynamic Slutsky Equations, Nova Science Publishers, New York, 2015.  

D.W.K. Yeung: Random Horizon Stocahstic dynamic Slutsky Equation under 

Preference Uncertainty, Applied Mathematical Sciences, Vol. 8, 2014, pp.7311-7340.  

 

Problem C5: Corresponding Problem of Theorem C5.  

The inter-temporal Roy’s identity under stochastic preferences is derived from the 

consumer problem in which the preference or utility function of the consumer in period 

1 is known to be )( 1

)1(1 xu . His future preferences are not known with certainty. In 

particular, his utility function in period },,3,2{ Tk   is known to be )(
)(

k

k
xu k  with 

probability k

k

  for },,2,1{ kk m . We use k
~ to denote the random variable with 

range },,2,1{ kk m  and corresponding probabilities },,,{ 21 km

kkk   . The discount 

factor is embodied in the utility function.  

          The consumer maximizes his expected inter-temporal utility   
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C6.  Inter-temporal Roy’s Identity under Stochastic Life-span and Preferences 
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Problem C6: Corresponding Problem of Theorem C6.  

The inter-temporal Roy’s identity under stochastic life-span and preferences is 

derived from the consumer problem in which the consumer’s life-span involves T̂  

periods where T̂  is a random variable with range },,2,1{ T  and corresponding 

probabilities },,,{ 21 T  . Conditional upon the reaching of period  , the 

probability of the consumer’s life-span would last up to periods ,1, + T,  

becomes respectively: 
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The preference or utility function of the consumer in period 1 is known to be 

)( 1

)1(1 xu . His future preferences are not known with certainty. In particular, his utility 



 26 

function in period },,3,2{ Tk   is known to be )(
)(
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k
xu k  with probability k

k

  for 

},,2,1{ kk m  if he survives in period k . We use k
~ to denote the random variable 

with range },,2,1{ kk m  and corresponding probabilities },,,{ 21 km

kkk   . The 

discount factor is embodied in the utility function.  

          The consumer maximizes his expected inter-temporal utility   
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C7. Inter-temporal Roy’s Identity under Stochastic Income and Preferences 
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Problem C7: Corresponding Problem of Theorem C7.  

The inter-temporal Roy’s identity under stochastic income and preferences is derived 

from the consumer problem in which the preference or utility function of the consumer 

in period 1 is known to be )( 1

)1(1 xu . His future preferences are not known with 

certainty. In particular, his utility function in period },,3,2{ Tk   is known to be 

)(
)(

k

k
xu k  with probability k

k

  for },,2,1{ kk m . We use k
~ to denote the random 

variable with range },,2,1{ kk m  and corresponding probabilities },,,{ 21 km

kkk   . 

The discount factor is embodied in the utility function.  

          The consumer maximizes his expected inter-temporal utility   
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subject to the budget constraint characterized by the wealth dynamic 
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where    

k  is the random income that the consumer will receive in period k ; and k , for 

},,2{ Tk  , is a set of statistically independent random variables, and 
T

E  ,,, 21   is 

the expectation operation with respect to the statistics of 2 , 3 , T, . The random 

variable k  has a non-negative range },,,{ 21 km

kkk    with corresponding 

probabilities },,,{ 21 km

kkk   , for },,2{ Tk  .  

 

C8. Inter-temporal Roy’s Identity under Stochastic Income, Life-span 

and Preferences 

 



 28 

jp

pWv




 



 ),( 0)(

0

0)(
),(




 

W

pWv








),( 0)(
pW

j


− , for },,2,1{  nj ;      

k

hp

pWv



 ),( 0)(


 

0

0)(
),(




 

W

pWv








 
==

+

=

+

+

+

+

+

+

+−
h

h

h

m

j

j

h

m

j

j
m

j

j

11

2

1

1

2

2

2

1

1

1  












 












 
+

+

+

+

+

+

=

+

=

+

2

2

2

1

1

1

1

2

1

1

mm







   


=

h

h

h

m

h

1

 h

1+
11

2
2

1
1

11
2

2
1

1

;

;)(
),(

−+
+

+
+

+

−+
+

+
+

+





h
hj

h

jj

h
hj

h

jj

h

h

h

h

W

pWv























),( 11
2

2
1

1 ;)(
pW h

hj

h

jj

h

h

k

h
−+

+
+

+
+ 

 






)()1( −−+ hr  

    
==

+

=

+

+

+

+

+

+

+







h

h

h

m

w

w

h

m

w

w
m

w

w

11

2

1

1

2

2

2

1

1

1  












 
==

+

=

+

+

+

+

+

+

+

h

h

h

m

h

mm

11

2

1

1

2

2

2

1

1

1











  












  

            h

1+ 








−+
+

+
+

+

−+
+

+
+

+

11
2

2
1

1

11
2

2
1

1

;

;)(
),(

h
hw

h

ww

h
hw

h

ww

h

h

h

h

W

pWv

























;                

or in an alternative form: 
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Problem C8: Corresponding Problem of Theorem C8.  

The inter-temporal Roy’s identity under stochastic income, life-span and preferences 

is derived from the consumer problem in which the consumer’s life-span involves T̂  

periods where T̂  is a random variable with range },,2,1{ T  and corresponding 

probabilities },,,{ 21 T  . Conditional upon the reaching of period  , the 

probability of the consumer’s life-span would last up to periods ,1, + T,  

becomes respectively: 
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The preference or utility function of the consumer in period 1 is known to be 

)( 1

)1(1 xu . His future preferences are not known with certainty. In particular, his utility 

function in period },,3,2{ Tk   is known to be )(
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k
xu k  with probability k

k

  for 

},,2,1{ kk m  if he survives in period k . We use k
~ to denote the random variable 

with range },,2,1{ kk m  and corresponding probabilities },,,{ 21 km

kkk   . The 

discount factor is embodied in the utility function.  

          The consumer maximizes his expected inter-temporal utility   
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subject to the budget constraint characterized by the wealth dynamics 
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where    

k  is the random income that the consumer will receive in period k ; and k , for 

},,2{ Tk  , is a set of statistically independent random variables, and 
T

E  ,,, 21   is 

the expectation operation with respect to the statistics of 2 , 3 , T, . The random 

variable k  has a non-negative range },,,{ 21 km

kkk    with corresponding 

probabilities },,,{ 21 km

kkk   , for },,2{ Tk  .  

 

 

C9. Dynamic Slutsky Equation 
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Problem C9: Corresponding Problem of Theorem C9.  

The dynamic Slutsky equation is derived from the consumer problem in which the 

consumer maximizes his inter-temporal utility  
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where   
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continuously differentiable and quasi-concave yielding convex level (indifference) 

curves. The time preference factor is embodied in the utility function. The time 

preference factor is embodied in the utility function. The amount of unconsumed 

wealth kkk xpW −  in period k  will generate an interest income )( kkk xpWr −  in 
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C10. Dynamic Slutsky Equation under Stochastic Income 
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Problem C10: Corresponding Problem of Theorem C10.  

The dynamic Slutsky equation under stochastic income is derived from the consumer 

problem in which the consumer maximizes his expected inter-temporal utility  
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subject to the budget constraint characterized by the stochastic wealth dynamics 
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where    

k  is the random income that the consumer will receive in period k ; and k , for 

},,2{ Tk  , is a set of statistically independent random variables, and 
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the expectation operation with respect to the statistics of 2 , 3 , T, . The random 

variable k  has a non-negative range },,,{ 21 km

kkk    with corresponding 
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C11.  Dynamic Slutsky Equation under Stochastic Life-span 
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Problem C11: Corresponding Problem of Theorem C11.  

The dynamic Slutsky equation under stochastic life-span is derived from the 

consumer problem in which the consumer’s life-span involves T̂  periods where T̂  is 

a random variable with range },,2,1{ T  and corresponding probabilities 

},,,{ 21 T  . Conditional upon the reaching of period  , the probability of the 

consumer’s life-span would last up to periods ,1, + T,  becomes respectively 
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where  

r  is the interest rate, kY  is the income that the consumer will receive in period k . 
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Problem C12: Corresponding Problem of Theorem C12.  

The dynamic Slutsky equation under stochastic income and life-span is derived from 

the consumer problem in which the consumer’s life-span involves T̂  periods where T̂  

is a random variable with range },,2,1{ T  and corresponding probabilities 

},,,{ 21 T  . Conditional upon the reaching of period  , the probability of the 

consumer’s life-span would last up to periods ,1, + T,  becomes respectively 
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where    

k  is the random income that the consumer will receive in period k ; and k , for 

},,2{ Tk  , is a set of statistically independent random variables, and 
T

E  ,,, 21   is 

the expectation operation with respect to the statistics of 2 , 3 , T, . The random 

variable k  has a non-negative range },,,{ 21 km

kkk    with corresponding 

probabilities },,,{ 21 km

kkk   , for },,2{ Tk  .  
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Problem C13: Corresponding Problem of Theorem C13.  

The dynamic Slutsky equation under stochastic preferences is derived from the 

consumer problem in which the preference or utility function of the consumer in period 

1 is known to be )( 1

)1(1 xu . His future preferences are not known with certainty. In 

particular, his utility function in period },,3,2{ Tk   is known to be )(
)(

k

k
xu k  with 

probability k

k

  for },,2,1{ kk m . We use k
~ to denote the random variable with 

range },,2,1{ kk m  and corresponding probabilities },,,{ 21 km

kkk   . The discount 

factor is embodied in the utility function.  

          The consumer maximizes his expected inter-temporal utility   
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Problem C14: Corresponding Problem of Theorem C14.  

The dynamic Slutsky equation under stochastic life-span and preferences is derived 

from the consumer problem in which the consumer’s life-span involves T̂  periods 

where T̂  is a random variable with range },,2,1{ T  and corresponding probabilities 

},,,{ 21 T  . Conditional upon the reaching of period  , the probability of the 

consumer’s life-span would last up to periods ,1, + T,  becomes respectively: 
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The preference or utility function of the consumer in period 1 is known to be 

)( 1

)1(1 xu . His future preferences are not known with certainty. In particular, his utility 

function in period },,3,2{ Tk   is known to be )(
)(

k

k
xu k  with probability k

k

  for 

},,2,1{ kk m  if he survives in period k . We use k
~ to denote the random variable 

with range },,2,1{ kk m  and corresponding probabilities },,,{ 21 km

kkk   . The 

discount factor is embodied in the utility function.  

          The consumer maximizes his expected inter-temporal utility   
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C15.  Dynamic Slutsky Equation under Stochastic Income and Preferences 
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Problem C15: Corresponding Problem of Theorem C15.  

The dynamic Slutsky equation under stochastic income and preferences is derived 

from the consumer problem in which the preference or utility function of the consumer 

in period 1 is known to be )( 1

)1(1 xu . His future preferences are not known with 

certainty. In particular, his utility function in period },,3,2{ Tk   is known to be 

)(
)(

k

k
xu k  with probability k

k

  for },,2,1{ kk m . We use k
~ to denote the random 

variable with range },,2,1{ kk m  and corresponding probabilities },,,{ 21 km

kkk   . 

The discount factor is embodied in the utility function.  

          The consumer maximizes his expected inter-temporal utility   
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subject to the budget constraint characterized by the wealth dynamic 
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where    

k  is the random income that the consumer will receive in period k ; and k , for 

},,2{ Tk  , is a set of statistically independent random variables, and 
T

E  ,,, 21   is 

the expectation operation with respect to the statistics of 2 , 3 , T, . The random 

variable k  has a non-negative range },,,{ 21 km

kkk    with corresponding 

probabilities },,,{ 21 km

kkk   , for },,2{ Tk  .  

 

 

C16.  Dynamic Slutsky Equation under Stochastic Income, Life-span 
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Problem C16: Corresponding Problem of Theorem C16.  

The dynamic Slutsky equation under stochastic income, life-span and preferences is 

derived from the consumer problem in which the consumer’s life-span involves T̂  

periods where T̂  is a random variable with range },,2,1{ T  and corresponding 

probabilities },,,{ 21 T  . Conditional upon the reaching of period  , the 

probability of the consumer’s life-span would last up to periods ,1, + T,  

becomes respectively: 
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The preference or utility function of the consumer in period 1 is known to be 

)( 1

)1(1 xu . His future preferences are not known with certainty. In particular, his utility 

function in period },,3,2{ Tk   is known to be )(
)(

k

k
xu k  with probability k

k

  for 

},,2,1{ kk m  if he survives in period k . We use k
~ to denote the random variable 

with range },,2,1{ kk m  and corresponding probabilities },,,{ 21 km

kkk   . The 

discount factor is embodied in the utility function.  

          The consumer maximizes his expected inter-temporal utility   
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subject to the budget constraint characterized by the wealth dynamics 
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where    

k  is the random income that the consumer will receive in period k ; and k , for 

},,2{ Tk  , is a set of statistically independent random variables, and 
T

E  ,,, 21   is 

the expectation operation with respect to the statistics of 2 , 3 , T, . The random 

variable k  has a non-negative range },,,{ 21 km

kkk    with corresponding 

probabilities },,,{ 21 km

kkk   , for },,2{ Tk  .  
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D. Biological Population Density Functions 

 

D1. Stationary Density Function of Generalized Stochastic Food-chain of the 

Lotka-Volterra-Yeung Type 

 

The function 
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gives the stationary probability density of species nNNN ,,, 21    of the generalized 

Lotka-Volterra-Yeung type of stochastic food-chain: 
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where )(tN i  is the population level of the species in the thi  trophic level at time t ; 

iv   for ]1,,2,1[ − ni   are positive constants, 1b  is positive and ib  for ],,3,2[ ni   

are nonnegative constants; 

01  , and i  for ],,3,2[ ni   are constants with i  being positive when 0ib  

and negative when 0=ib ; 

0)0( =if  and 0)( ii Nf  for positive values of iN , and )( ii Nf  is a continuous 

differentiable and monotonically increasing in iN , and )( s

i ef  is an integrable 

function yielding dsef
ix

s

i )(
0  = ),0()( iii FxF −  for ni ,,2,1 = ; 

and  

nAAA ,,, 21   satisfies 

=+ 2111 AvAb
1 , 

=++− 322211 AvAbAv
2 , 

=++− 433322 AvAbAv
3 , 

            

nnnnnn AvAbAv 11122 −−−−− ++−
1−= n , 

=+− −− nnnn AbAv 11 n .            

 

References: D.W.K. Yeung: An Explicit Density Function for a Generalized 
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Stochastic Food-chain of the Lotka-Volterra-Yeung Type, Stochastic Analysis and 

Applications, Vol. 27, 2009, pp.16-23. 

Note:  

Using the generalized density function D1 one can also obtain the stationary density 

function of the stochastic Lotka-Volterra food-chain in Yeung (1988): 

 

dttNtNctbNtNatdN ))]()(()()([)( 211

2

1111 −−= )()(1 tdztN+ , 

)([)( tNatdN iii −= ))()(( 1 tNtNc iii +− dttNtN iii )]()( 1−+ ,             

     for 1,,3,2 −= ni  , 

dttNtNtNatdN nnnnnn )]()()([)( 1−+−=  ,                 

 

where )(tN i  is the population level of the species in the thi  trophic level at time t , 

)(tz  is a standard Wiener process, with 0)( =idzE , dtdzE i =)( 2  and 0)( =dtdzE , b , 

ia  for ],,3,2,1[ ni   and ic  for ]1,,3,2,1[ − ni   and i  for ],,3,2[ ni   are 

positive constants, and   is a constant. 

 

 Similarly, using the generalized density function D1 one can also obtain the 

stationary density function of the prey species 1N  and the predator species 2N   of the 

predator prey system in Yeung (1986): 

 

dttNtNctbNtNatdN ))]()(()()([)( 211

2

1111 −−= )()(1 tdztN+ , 

                       )([)( 222 tNatdN −= dttNtN )]()( 12+ ,          

 

where 1a , 2a , b ,   and   are positive constants, and )(tz  is a standard Wiener 

process, with 0)( =idzE , dtdzE i =)( 2 . 

 

References:  D.W.K. Yeung: Exact Solutions for Steady-State Probability Distribution 

of a Simple Stochastic Lotka Volterra Food Chain. Stochastic Analysis and 

Applications, Vol. VI, 1988, pp. 103-116. 

D.W.K. Yeung: Optimal Management of Replenishable Resources in a Predator-Prey 

System with Randomly Fluctuating Population.  Mathematical Biosciences, Vol. 78, 

1986, pp. 91-105. 

 

 

E.  Number Theory 

 

 

 

E1.  The Number of Embedded Coalitions  

The number of embedded coalitions in a n -person game is: 
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Problem E1: Corresponding Problem of Theorem E1.  

 

Let },,2,1{ nN =  be a finite set of n  players in a −n person game. The subsets of 

N  are coalitions. A partition   is formed by disjoint non-empty subsets of N  

representing a way that these n  players are joined. Given a partition   and a 

coalition NS  , the pair ),( S  is called an embedded coalition, that is the coalition 

S  embedded in partition  . The Bell (1934) number, denoted by )(n , gives the 

number of partitions in a −n person game. The number of embedded coalitions in a 

partition is the number of subsets formed in that partition. The total number of 

embedded coalitions )(nY  in a −n person game is the sum of the numbers of 

embedded coalitions in the )(n  partitions of N .  

References: D.W.K. Yeung: Recursive Sequences Identifying the Number of 

Embedded Coalitions,  International Game Theory Review, Vol. 10(1), 2008, pp.129-

136.  

E. T. Bell [1934] Exponential numbers, American Mathematical Monthly 41, 411-

419, 1934.  

                                                                          

 

 

 

E2.  The Number of Embedded Coalitions where the position  

of the individual player counts 

 

The number of embedded coalitions in a n -person game where the position of the 

individual player counts is: 
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, for 3n .                                        ■      

References: D.W.K. Yeung, E.L.H. Ku and P.M. Yeung: A Recursive Sequence for the 

Number of Positioned Partitions, International Journal of Algebra, Vol. 2, 2008, 

pp.181-185.                                                  

 

Problem E2: Corresponding Problem of Theorem E2.  

Consider the problem in Problem E1 in which the position of the individual player in 

a embedded coalition counts. The total number of embedded coalitions )(n  in a is 

the sum of the numbers of embedded coalitions with the positions of individual 

players count in the )(n  partitions of N .  
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