ADDENDUM TO
Curriculum Vitae of David W. K. Yeung

Mathematical Formulae Developed

One cannot escape the feeling that these
mathematical formulas have an independent
existence and an intelligence of their own,

that they are wiser than we are, wiser even than
their discoverers... ~Heinrich Hertz (1847-1894)

Part A: Control Theory

Theorem Al. (Random-horizon Bellman Equation)
A set of strategies {u, =, (x), for k € T} provides an optimal solution to the control
Problem Al (see below) if there exist functions V(k,x), for k e T, such that the
following recursive relations are satisfied:

V(T +1x)=0r..(2),
V(T,x) = muax{ gT(X’uT)+V[T +1, fT (X’UT)] }!

V(z,X) = max{ g,(x,u,)+T9—Tqu[fT (x,u.)]
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Reference: D.W.K. Yeung and L. A. Petrosyan: Subgame Consistent Cooperative

Solution of Dynamic Games with Random Horizon. Journal of Optimization Theory
and Applications, Vol. 150, pp78-97, 2011.

Theorem A2 (Random-horizon Stochastic Bellman Equation under
Uncertain Future Payoff Structures)

A set of strategies {u™” = 4°(x), for o, e{l,2,---,n} and ke{l,2,---,T}}
provides an optimal solution to the stochastic control Problem A2 if there exist
functions V¥ (k, x), for k e{L,2,---,T}, such that the following recursive relations
are satisfied:

V(T +1,%) =G, (%),
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for r e{L,2,---, T -1}. [
Reference: D.W.K. Yeung and L.A. Petrosyan: Subgame Consistent Cooperative
Solutions For Randomly Furcating Stochastic Dynamic Games With Uncertain
Horizon. International Game Theory Review, Vol. 16, 2014, pp.1440012.01-
1440012.29.

Theorem A.3. Dynamic Optimization Technique for Durable Controls

Let W(k,x;u,_) be the maximal value of the payoff of the problem of maximizing

T
Z 9k (Xk Uy uk—) + qT+1(XT+l; U(T+1)_)
k=1

subject to the dynamics X, ., = f, (X.,U,;u, ), X =X,
where u,_ is the set of controls which are executed before stage k but still in effect in
stage k.

The function W (k, x;u, ) satisfies the following system of recursive equations:

W(T +1, X;U(T+1)_) = qT+l(XT+1;u(T+1)—) ,

Wk, xu, ) = nlax{ g (X uu, ) +WIk +1, f, (X!uk;uk—);u(k+1)—] },

k




for k e{L,2,---,T}. [

References: D.W.K. Yeung, L.A. Petrosyan (2020): Cooperative Dynamic Games
with Durable Controls: Theory and Application, Dynamic Games and Applications,
D0i:10.1007/s13235-019-00336-w.

9(2), 550-567, 2019, https://doi.org/10.1007/s13235-018-0266-6.

D.W.K. Yeung, L.A. Petrosyan (2019): Cooperative Dynamic Games with Control
Lags, Dynamic Games and Applications, 9(2), 550-567,
https://doi.org/10.1007/s13235-018-0266-6.

Part B: Game Theory

Theorem B1. (Random-horizon (Hamilton-Jacobi-Bellman) HIB Equations)
A set of strategies {¢,(x) , for keT and ieN} provides a feedback Nash
equilibrium solution to the game Problem Bl (see below) if there exist functions

Vi(k,x), for keT and ieN, such that the following recursive relations are
satisfied:

VI(T,x) = rrlf;lX{ g7 [X, 4 (%), 67 (X), -+ 65 (%), Up 47 (X), -+, 7 (X)]
+r [ O 00, 82 (¥), - 47 (), U 47 (), 4 ()] } ,
Vi(z,x) = rnu{:lx{ 9: 1%, 4, (), 67 (%), 47 (), Uz, 7 (X), -+, (X)]

+f—’qiﬁ1 [fi (X, 00,6 00+, (X, Uy 87 (X), -, (X))]
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for r e{L,2,---, T —-1}. m

Reference: D.W.K. Yeung and L. A. Petrosyan: Subgame Consistent Cooperative
Solution of Dynamic Games with Random Horizon. Journal of Optimization Theory
and Applications, Vol. 150, pp78-97, 2011.

Theorem B2. (Random-horizon Stochastic HIB Equations under




Uncertain Future Payoff Structures)

A set of strategies {u’” = ¢ (x), for o, e{L,2,---,n.}, 7€{L,2,---, T} and i e N}
constitutes a Nash equilibrium solution to the game Problem B2 (see below) if there
exist functions V' (z,x), for o, e{1,2,---,7.}, re{,2,---, T} and i N, such that
the following recursive relations are satisfied:
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Reference: D.W.K. Yeung and L.A. Petrosyan: Subgame Consistent Cooperative
Solutions For Randomly Furcating Stochastic Dynamic Games With Uncertain

Horizon. International Game Theory Review, Vol. 16, 2014, pp.1440012.01-
1440012.29.

Theorem B4. (Nontransferable Individual Payoff in Continuous-time
Stochastic Dynamic Cooperation)

If there exists a set of controls {ui‘“) )=y (t,x), forieN } and value functions
W@ (t,x) :[t,,T]xR" — R which provide an optimal solution to the stochastic
control Problem B4 (see below), then the individual player’s payoff
W@ (t,x) :[t,,T]IxR" >R for ieN satisfy the following partial differential
equations:

~W(t,X) —% Zm:QM (t, X)W {2 (t, ) =

x"x¢
ho=1




max{ (zn:ajgj(t,x,ul,uz,"'aun)JeXp[—J‘: r(Y)dY}

Uy Uy i

+W @ (t,x) f(t,x,u",u’,---,u") }

W T, %) =expl- (T ~t,)] Ya'a’ (),

=1

a)i 1 c a)i —
—~W, ' (t, X) - DO (X)W 2 (t,x) =

he=1

Tty @ (t @ (£ XY -ee @ (t _("revyd
0'Tt X3 (6 X), 7 (6 ), (6 X)]exp| = [ r(y)dy
+W (L, x) Tt X, ™ (8, %), Wi (t, X), - (t,x)] and

W (T x) = exp[— fr(y)dy}qi(x), forieN. .

References: D.W.K. Yeung: Nontransferable Individual Payoff Functions under
Stochastic Dynamic Cooperation, International Game Theory Review, Vol. 6, 2004,
pp. 281-289.

D.W.K. Yeung: Nontransferable Individual Payoffs in Cooperative Stochastic
Dynamic Games, International Journal of Algebra, Vol. 7, 2013, pp. 597-606.

Theorem B5. (Subgame-consistent Payoff Distribution Procedure (PDP) for
Discrete-time Stochastic Dynamic Cooperation)

Consider the cooperative stochastic dynamic game Problem B5 (see below) in which
the players agree to maximize their joint expected payoff and share the cooperative

gain according to the imputation &'(k,x;) for player i e N in stage k e« along the

cooperative trajectory {xk }1:1- A Payoff Distribution Procedure (PDP) with a payment
equaling

B! (1) = (L+ 1) { £ (k)

—Eek( &K+, fi (6w (X)W (X, v (%)) + 6,1 J }

forieN,

given to player i at stage k e x, if x, € X, would lead to the realization of the
imputation {&'(k,x; ), forieN and ke x };

where

{w.(x), for k e & and i e N} is a set of strategies that provides an optimal solution to
the Problem B5 yielding functions W(k, x) , for k e K, such that the following
recursive relations are satisfied:

n - k-1
W (k,x)= max Ee{ > gd[X,uﬁ,u.f,"',UQ](ij
bl = 1+r




+WIk +1, f (x,u,ul,--,ul) +6,] }

WT+190=3 6/, (x) (ij - .

- 1+r
j=1
References: D.W.K. Yeung and L. A. Petrosyan: Subgame Consistent Solutions for

Cooperative Stochastic Dynamic Games. Journal of Optimization Theory and
Applications, Vol. 145, 2010, pp. 579-596.

Problem B5: Corresponding Problem of Theorem B5.
Consider the general T — stage n— person discrete-time cooperative stochastic

dynamic game with initial state x°. The state space of the game is X € R™ and the

state dynamics of the game is characterized by the stochastic difference equation:
Xeor = Fie (Ko U, Ug oo, Uu0) + 6,

for ke{L,2,---,T}=x and x, =x°,

where u, e R™ is the control vector of player i at stage k, x,_ € X is the state, and

6, is a set of statistically independent random variables.

The objective of player i is

T 1 | 1 T
i 1,2 n i
E91,Hz,---,6‘r{ ; gg[xrug“’u?’m’uc](l_i_ I’J + 0.1 (Xr,1) (14_ I’-j },
forie{l,2,---,n}=N,
where r is the discount rate and E, , _, is the expectation operation with respect to
the statistics of 6,,6,,---,0; .

The players agree to maximize their joint expected payoff and share the
cooperative gain according to the imputation &'(k,x,) for player ie N in stage

k e  along the cooperative trajectory {xk }Ll. Examples of the imputation &' (K, x;)

include:
(i) Sharing the extra gain from cooperation equally, and the imputation to player i
becomes:

fi(k,x:):vi(k,x:)+% W(k,x;)—zw(k,x;)] forieN and k e x,
j=1

where V'(k,x;) is the expected noncooperative payoff of player i and W (k,x;) is
the expected total cooperative payoff.

(ii) Share the total cooperative proportional to the players’ noncooperative payoffs,
and the imputation to player i becomes:

fi(k,x:):MW(k,x;), forieN and kex.
SVIkX)
=1

Theorem B6. (Subgame-consistent PDP for Continuous-time Stochastic
Dynamic Cooperation)




Consider the cooperative stochastic differential game Problem B6 (see below) in
which the players agree to maximize their joint expected payoff and share the

cooperative gain according to the imputation £ (s,x) in current value at time s for

player ie N in time se[t,,T] along the cooperative trajectory {x:};to . A Payoff
Distribution Procedure (PDP) with a payment equaling

]

| ACH S NACH S EACES)

B, (s,X) = — |59 (,%)
-0

t=s

>0 () | £5 (0 X)

h,c=1

_% } forieN and X € X_,
t=s

given to player i at time se[t,, T] would lead to the realization of the imputation
{&9(s,x]), forieN and selt,,T1};

where

{w, (s,x), for ieN and se[t,,T] is a set of strategies that provides an optimal
solution to the Problem B6 vyielding functions continuously twice differentiable
functions W (t,x) :[to,T] xR™ — R, which satisfy the following partial differential
equation:

~W, (t,x) —% ighf (tXW , (t,x)=

he=1

max { Z gj[t,x,ul,uzw-,un]exp[—f;r(y)dy}

[V TAREEATS j:l

+W, (t,x) f[t,x,u,,u,,---,u.] } and

W)= 900 e - [ rn)ay | .

References: D.W.K. Yeung and L. Petrosyan: Subgame Consistent Cooperative
Solution in Stochastic Differential Games, Journal of Optimization Theory and
Applications, Vol. 120, 2004, pp.651-666.

D.W.K. Yeung and L. A. Petrosyan: Subgame Consistent Economic Optimization: An
Advanced Cooperative Dynamic Game Analysis, Boston: Birkhduser. ISBN 978-0-
8176-8261-3, 395pp, 2012.

Problem B6: Corresponding Problem of Theorem B6.
Consider the n-person cooperative stochastic differential game in which player i
seeks to maximize its expected payoffs:

Eto{ J o' X(S%“1<s),uz<s>,---,un(s)]exp[— jt:r<y)dy}ds




+exp[—jtTr(y)dy}q‘(x(T)) } forieN,  with

E, { } denoting the expectation operation taken at time to, and the dynamics of the

state is
dx(s) = F[5,X(5).Uy (8),U, (5),+++, U, (s)]ds+oTs, X($)]dz(s),  X(t,) =X,

where G[s, X(S)] isa m x ® matrix and z(s) is a ®-dimensional Wiener process and the
initial state xo is given. Let Q[s, x(s)] = o[s, x(s)] ofs, x(s)]” denote the covariance
matrix with its element in row h and column ¢ denoted by Q"[s, x(s)]. Moreover,
E[dz,]=0 and E[dz, dt]=0 and E[(dz )*]=dt , for @e[L2---,0] ; and
E[dz_dz,]1=0, for @ €[12,---,0], w<[12,---,0] and @ # w.

The players agree to maximize their joint expected payoff and share the cooperative
gain according to the imputation £®(s,x.) in current value at time s for player

ieN intime se[t,,T] along the cooperative trajectory {x:};to :

Theorem B7. (Subgame-consistent PDP for Random-horizon
Dynamic Cooperation)

Consider the random-horizon cooperative dynamic game Problem 7 (see below) in
which the players agree to maximize their joint payoff and share the cooperative gain

according to the imputation &'(z,x)) for player ie N in stage rex along the

cooperative trajectory {x }1:1- A Payoff Distribution Procedure (PDP) with a payment
equaling
.
20
B;(Xr) = él(z-' Xr) _GV;'L 5'(2-_,{_11 fr [Xr’w:r[(xr)'l//f(xr)’...’l//rn(xr)])

2.5
§=t

[ n :
— Oy (F DXy (XD () wt (X)), forieN,

-
2.9,
§=r
given to player i at stage r ex would lead to the realization of the imputation
E'(z,x}) forplayer ie N instage rex;
where
{w!(x), for rex and ieN} is a set of strategies that provides a group optimal

solution to the Problem 9 vyielding functions W(k,x) , for zex, such that the
following recursive relations are satisfied:

W(T +1,X) :Z o, (x),

W(T’X) =  max n{ Z gTj[X’U%’UTZ""aUH +qT+l[fT (X,UT,U%,UTZ,W,U?)] }a
u u -1

7YY




W(z,x)= max { { gl[x,uf,u?,---,u"] +f—qu+l[fr (x,ut,u?,---,uM)]
Uz Uz, Uy -1 Zgg
§=t
.
2.6
+E W+ f, (xul,u?eul)] p, for r e{l2, T, m
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References: D.W.K. Yeung and L. A. Petrosyan: Subgame Consistent Cooperative

Solution of Dynamic Games with Random Horizon. Journal of Optimization Theory
and Applications, Vol. 150, pp78-97, 2011.

Problem B7: Corresponding Problem of Theorem B7.

Consider the n— person cooperative dynamic game with T stages where T is a
random variable with range {,2,---,T} and corresponding probabilities
{6, ,6,,---,6;}. Conditional upon the reaching of stage z, the probability of the game
would last up to stages 7,7 +1, ---,T becomes respectively

91' 91+1 . HT

T y T ' VT .
2.0 20, 26
g=t {=t ¢=t

The payoff of player i at stage k e{1,2,---, T} is g.[X,,ur,u?,---,u’]. When the game
ends after stage T , player i will receive a terminal payment q}ﬂ(xm) instage T +1.

The state space of the game is X € R™ and the state dynamics of the game is
characterized by the difference equation:

X = fk (Xk’ui’uf""’ug),
for ke{l,2,---,T}=x and x, =x°,
where u; e R™ is the control vector of player i at stage k and x, € X is the state.
The objective of player i is

T . .
E{ T gl ]+ (6 ) }
k=1

:Zef{ > 0hDG U U 14 0, (X, ) }

T
T=1 =

forie{l,2,---,n}=N .

The players agree to maximize their joint expected payoff and share the cooperative
gain according to the imputation &'(k,x,) for player i e N in stage k e x along the

cooperative trajectory {xk }1:1 .

Theorem B8. (Subgame-consistent PDP for Discrete-time Stochastic
Dynamic Cooperation under Uncertainty in Payoff Structures)




Consider the randomly furcating cooperative stochastic dynamic game Problem B8
(see below) in which the players agree to maximize their joint expected payoff and
share the cooperative gain according to the imputation

EK,x)  =[ECNMK, %), ET% (K, %), -+, £k, x;)]  along the  cooperative
trajectory given that &'« has occurred in stage k , for o, €{L2,---,n} and
k e{l,2,---,T}. A Payoff Distribution Procedure (PDP) with a payment equaling

B (%) = &' (k, %)

Mk+1 . . o e .
_E9k|: Z afl{ g(okﬂ)l[k"‘la f, (Xk’WLE & (x))+ %1 j ]

Oy =1

forieN,

given to player i at stage k e{L,2,---, T}, if 67« occurs and x, € X, , leads to the
realization of the imputation &% (k,x;) for k e {1,2,---,T};

where

where w77 (x) ={y " (), VT (X), pT(0}, for o, €12, and
te{l2,---,T} is a set of strategies that provides a group optimal solution to Problem
B8 yielding value functions W (t,x), for o, e{1,2,---,7.} and t e{1,2,---, T}, such
that the following recursive relations are satisfied:

W41 =Y 000,

n

(o) _ iy gt g2 | ylenn. gor
W) = s B o E&{ 2 DU U ]
T U L

j=1
AW 4 b )5 8]

n

(o) — i (o)1 [ ,(01)2 v (e)n. oy
W (t, ) ufat>1vuggﬁa§,,ufat>nE9t{ 2 O DU U i 0]

i1

M1
+ ZAUJEW(UIA)[':_'_L ft (X,ut(o-t)l,ut(o-t)zy...lut(o-l)n)+19t] } ,

opa=1

for o, e{l,2,---,n,} and te{L,2,---, T -1}. ]
Reference: D.W.K. Yeung and L. A. Petrosyan: Subgame-consistent Cooperative

Solutions in Randomly Furcating Stochastic Dynamic Games. Mathematical and
Computer Modelling, Vol 57, pp.976-991, 2013.

Problem B8: Corresponding Problem of Theorem BS.
Consider the T —stage n—person randomly furcating cooperative stochastic dynamic
game with initial state x°. The state space of the game is X e R™ and the state

dynamics of the game is characterized by the stochastic difference equation:
X = Fio (KU Ug -, ug) +8
for kefl,2,---, T} and x, =x°,

10




where u, eU' < R™ is the control vector of player i at stage k, x, € X is the state,
and 4, is a sequence of statistically independent random variables.

The payoff of player i at stage k is g, (x,,u;,uZ,---,u;;8,) which is affected
by a random variable 6, . In particular, 6, for k e{L,2,---, T} are independent discrete
random variables with range {6;,67,---,6/} and corresponding probabilities
{A4,22,---, 20}, where 5, is a positive integer for k e{L,2,---,T}. In stage 1, it is
known that 6, equals &; with probability 4 =1.

The objective that player i seeks to maximize is

T - .
E€1v92r“,9T2191u92v“'13T{ z glL(Xk'qu.’ulf’.”’ul?;Hk)+qI(XT+1) }’

k=1
forie{l,2,---,n}=N,
where E, , ,.4.4..4 IS the expectation operation with respect to the random
variables 6,,6,,---,6, and 9 ,9,,--+,% , and q'(x.,,) is a terminal payment given at
stage T +1. The payoffs of the players are transferable.

Theorem B9. Subgame-consistent PDP for Continuous-time Stochastic
Dynamic Cooperation under Uncertainty in Payoff Structures

Consider the randomly furcating cooperative stochastic dynamic game Problem B.9
(see below) in which the players agree to maximize their joint expected payoff and
share the cooperative gain according to the imputation §i[g§k](k)r(t,xf), forieN ,
reltot.,], telot,], ke{0l2,--,m-1}, and 6; {6, .6,,...6,}. A Payoff
Distribution Procedure (PDP) with a payment equaling

t—r]
()05 ()0,

&th@wl (2. X)) (0 X000 (2, X))
2 h,¢=1

t—r:| '
forieN and ke{l,2,---,m},
given to player i at time zelt,,t, ] contingent upon H;k €{6,.,0,,...0,} has

(65 )k _ i[ok 1K)z *
Bi (T) - = [ét (t’ Xt )
. k *
o)

1< wy | il 0T
=0 (r, xr)[ ;t“x; (t,x,)

occurred at time t,, leads to the realization of the imputation §i[9§k](k”(t,x:), for
ieN, reft t,], telrt, ], ke{012,:-,m-1,and 6, {6, .6,,...6,}.

where

UM% () =M% (), for teft, T u% @ =p % tx) , for telt.t.,)
ke{012,---,m-1} and i e N}, contingent upon the events & and ejk is a set of
controls that provides a group optimal solution for the game Problem 11 vyielding
continuously  differentiable ~ functions Ww“mm](m)(t,x):[tm,T]xRK —->R and

11




W (¢ ) [t b . ] xRS — R for k e{01,2,---,m—1} which satisfy the following
partial differential equationS'
RIVCALTEN _; > Q" (¢, W% Mt x)

h,¢c=1

— [i.05,1 (m)6z, (m)¢9m - (m)em —r(t-t,)
_gamurp L {Zg [t,x(t),u; U, "le

=1

'~n

FW X ) [t x,u™ % M g M } and

'9 n1(m) (T X) e —r(T—t) Zq (X)

_Wt[gak 1(k) (t, X) _ 2 thé’ (t X)W [Gak 1(k) (t, X)

h,¢=1

_ [i.01 (k)0 (k)ﬁk (k)ea —r(t-t)
S B e
u1 Uy

0, k k)e k k
W0 g xy £ xuf% U L % },and

k i k+1

WO x) =2, WO x),  for ke{01,2,--,m-1}. u
a=1

References: L. A. Petrosyan and D.W.K. Yeung: Subgame-consistent Cooperative
Solutions in Randomly-furcating Stochastic Differential Games, International Journal
of Mathematical and Computer Modelling (Special Issue on Lyapunov’s Methods in
Stability and Control), Vol. 45, June 2007, pp.1294-1307.
L. A. Petrosyan and D.W.K. Yeung: Subgame Consistent Cooperation — A
Comprehensive Treaties, Springer 2016.

Problem B9: Corresponding Problem of Theorem B9.
Consider a class of randomly furcating cooperative stochastic differential game in

which there are n players. The game interval is [t,, T] . When the game commences
at t,, the payoff structures of the players in the interval [t,,t;) are known. In future
instants of time t, (k=1,2,---,m), where t, <t, <T =t,,, the payoff structures in
the time interval [t,,t,,,) are affected by a series of random events ®*. In particular,

m+11

O for k efl, 2,---, m}, are independent and identically distributed random variables
with range {6, ,0,, ...,6,} and corresponding probabilities {4,,4,,...,4,}. At time T
a terminal value g' (x(T)) will be given to player i. Player i seeks to maximize the
expected payoff:

Eto{ J‘ttlg[i,eé’][s, X(3), U, (S),U,(S),--,u_(s)] "¢ ds

+ZZM 19" s, x(), U (5),U, (8), un(s)]e“‘5‘0>+e“““q‘(x(T))},

h=1a,=1

forie{l,2,---,n}=N,

12




where x(s)e X —cR* is a vector of state variables, 49; {4 .0,,..,0,} for
kefl2,---,m}, 0, = gy is known at time t,, r is the discount rate, u, eU" is the
control of player i, and E, denotes the expectation operator performed at time t,.

The payoffs of the players are transferable.
The state dynamics of the game is characterized by the vector-valued
stochastic differential equations:

dx(s) = f[s, x(s),u, (s),u,(s),---,u,(s)lds + a[s, x(s)]dz(s),

X(ty) = X,
where ofs, x(s)] is a x xv matrix and z(s) is a v-dimensional Wiener process and
the initial state xo is given. Let Q[s,x(s)] = ofs,x(s)] o[s,x(s)]' denote the
covariance matrix with its element in row h and column ¢ denoted by Q" [s, x(s)].
u. €U, < compR’ is the control vector of player i, for ieN .

Theorem B10. (Subgame-consistent PDP for Random-horizon Stochastic
Dynamic Cooperation under Uncertainty in Payoff Structures)

Consider the uncertain horizon randomly furcating cooperative stochastic dynamic
game Problem B10 (see below) in which the players agree to maximize their joint
expected payoff and share the cooperative gain according to the imputation

EOK, %) =[ECMK, %), ET% (K, %), -+, £k, x;)]  along the  cooperative
trajectory given that &'« has occurred in stage k , for o, €{L2,---,n} and
k e{L,2,---,T}. A Payoff Distribution Procedure (PDP) with a payment equaling

o )iy oy )i * o i * o )*
BIE ) (%) ='§( ) (k, %) _Egk{ T—k Ol fe (X v ) (Xk))+‘9 ]
T,
=k
T
zw I .
4opske # k+1 z O'k+1 éz(tfk+1)l|:k_,_:|_ f (Xk’ (%) (Xk))+19 ] }
qu et
c=k

given to player ie N at stage k e{1,2,---, T} if 7 e{6},67,---,6/} occurs would
lead to the realization of the imputation:
EV k%) =[E (K, %), £ (K, %), £ (k)] for oy e{L.2-,} and
ke{l,2,---,T};
where

w7 (%) = [ (%) w707 (%), w7 (x:)], for kex and ieN is a set of
controls that provides a group optimal solution to the Problem B10 yielding functions
W (t,x), for o, e{L,2,---,n,} and t e{L,2,---, T}, such that the following recursive

relations are satisfied:

WEIT+1)=) gl (x),
j=1
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WEIT, ) = max E {Z 07 (X,Ur, U7, -, ur; 67")

Uf Uf U

+W(O-T+1)[T +1| fT (Xlu':ll:!u'lg""’u'lrj)-’_lg'r] }’

n
(o7) _ E j 14,2 ... "-po-
W (T,X) - u%,rur;,ax,u? EBT{ e g‘r (X’ur’u‘r7 7u‘r’ar )

>

| LE (XUl U2, uM) + 9 ]

r+l

+é’r+1 Z /10'+1W(O'+1)[,Z-_+_1, fz' (X,Ui,UTZ,,U:)"“gr] }

7+1
Ori1
Z @,

1
=T

for r e{L,2,---, T —-1}. ™
Reference: D.W.K. Yeung and L.A. Petrosyan: Subgame Consistent Cooperative
Solutions For Randomly Furcating Stochastic Dynamic Games With Uncertain
Horizon. International Game Theory Review, Vol. 16, pp.1440012.01-1440012.29,
2014,

Problem B10: Corresponding Problem of Theorem B10.

Consider the T —stage uncertain horizon randomly furcating cooperative stochastic
dynamic game problem where T is a random variable with range {1,2,---, T} and
corresponding probabilities {=, ,@,,---,@;}. Conditional upon the reaching of stage
7 , the probability of the game would last up to stages z,z+1, ---, T becomes
respectively

o w

T 7+1

@

1T : (11)
ZTZU ZZU ;wg

The state space of the game is X € R™ and the state dynamics of the game is
characterized by the stochastic difference equation:

X = Fio (KU Ug -, ug) +8 (1.2)
for ke{L,2,---, T} and x, =x°,
where u, eU' < R™ is the control vector of player i at stage k, x, € X is the state,

and 9, is a sequence of statistically independent random variables.

The payoff of player i at stage k is g,[x,,u;,uZ,---,u;;8,] which is affected
by a random variable 6, . In particular, 6, for k e{1,2,---,T} are independent random
variables with range {&;,67,---,0*} and corresponding probabilities {4., 2 ,---, A*}.
In stage 1, it is known that 6, equals 6 with probability 4 =1. When the game ends
after stage T, a terminal payment q;ﬂ(xm) will be given to player i instage T +1.

The objective that player i seeks to maximize is

14




Z O [X U Ug - 05 6.1+ (%) } }

1

T
Eﬁlﬂzv“‘:@T 191,95, 9 { zw-f|:

T=1

forie{l,2,---,n}=N,

where E, , ,.4.4..4 IS the expectation operation with respect to the random

variables 6,,6,,---,6; and 4 ,9,,---,9 . Since there is no uncertainty in the payoff

structure in stage T+1, we denote o,,=1, 67 =6 with probability
714 = 2, =1 for notational convenience.

Theorem B11. (Subgame-consistent Solution Mechanism for Dynamic
Cooperation under Non-transferrable Payoffs (NTU) )
Consider the non-transferrable payoff/utility (NTU) cooperative dynamic game
Problem B11 (see below) in which the players agree to use a set of payoff weights

{a, =& .,é&;,--,4}), for k e &} for joint maximization of the weighted joint payoff
so that the imputation &'(k,x;) for player i e N in stage k e x along the cooperative

trajectory {x; }1:1 can be achieved.
A set of payoff weights {@, = (& .4, --,4]), for kex} and a set of

()i

strategies {y,*" (X), for k e k and i € N} provides a subgame consistent solution to

the NTU cooperative dynamic game Problem B11 if there exist functions W “*’ (k, x)
and W@ (k,x), for i e N k e &, which satisfy the following recursive relations:
W(O?nl)i('l' +1, X) — qi (XT+1) ,

A n . -
Wk, x)= max { > é&'g)(x.u;,u,-up)
ug u? i1

n
kUi Uy

+Zn:dk"w‘&k+1”[k+1, f, (x,up,uZ,--,uM] };
j=1
W@ (k, >:) = 9/ 6 00,2 (0, " (%)
+W Ok +1, f, (6 M), 5% (%), - M )],
forieN and kex;
and imputation &'(k,x,) for player i e N in stage k e
where the value function W “' (k,x) is the payoff for player i e N in stage k e x

under cooperation. m

Reference: D.W.K. Yeung and L.A. Petrosyan: Subgame Consistent Cooperative
Solution for NTU Dynamic Games via Variable Weights, forthcoming in Automatica,
2015.

Problem B11: Corresponding Problem of Theorem B11.
Consider the general T —stage n—person dynamic game with initial state x_. The

state space of the game is X € R™ and the state dynamics of the game is characterized
by the difference equation:

n

xk+1 = fk (Xk’ui’usl...luk)l

15




for ke{l,2,---,T}=« and x, = x/,
where u, € R™ is the control vector of player i atstage k, and x, € X is the state of

the game. The payoff that player i seeks to maximize is
T

Gic (X Ui Uy, U0) +0' (Xpy)
k=1

forie{l,2,---,n}=N,
where g'(x.,,) is the terminal payoff that player i will received in stage T +1.

The payoffs of the players are not transferable. The players agree to use a set
of payoff weights {&, =(a;,&/},--, &), for kex} for joint maximization of the
weighted joint payoff so that the imputation &'(k, x,) for player i e N in stage k e x
along the cooperative trajectory {x; }1:1 can be achieved.

Theorem B12. (Subgame-consistent Solution Mechanism for Stochastic Dynamic
Cooperation under Non-transferrable Payoffs (NTU) )

Consider the non-transferrable payoff/utility (NTU) cooperative stochastic dynamic

game Problem B12 (see below) in which the players agree to use a set of payoff

weights {a&, =(a;,a?2,---,a)), for kex} for joint maximization of the expected
weighted joint payoff so that the imputation &'(k, ;) for player i e N in stage k e x
along the cooperative trajectory {xk }1:1 can be achieved.
A set of payoff weights {@, = (& .4, --,4]), for kex} and a set of
(@)

strategies {y, “" (X), for k e k and i € N} provides a subgame consistent solution to

the NTU cooperative dynamic game Problem B12 if there exist functions W “*’ (k, x)
and W@ (k,x), for i e N k e x, which satisfy the following recursive relations:

W (@ra)i (T +1 X) = qi (XT+1) |

. n . .
w(“k)(k,x)=u1ru”zaxn{ Eg{ D@l (x U ug, e uy)
k 1Yk j=1

oo Uy

+ > GW Sk 41, f (XU U2 W) + G ()6, ] } };

=1

W (k, x) = Eek{ 9¢ G 0002 (0, 7 (X))

AW Gk, g™ 0,4 (X), - " () + G, (X)6, ] }
forieN and kex;

and imputation &'(k,x,) for player i e N in stage k e «,

where the value function W “'(k, x) is the expected payoff for player i € N in stage
k € k under cooperation. [
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Reference: D.W.K. Yeung and L.A. Petrosyan: On Subgame Consistent Solution for
NTU Cooperative Stochastic Dynamic Games, paper presented at European Meeting
on Game Theory (SING11-GTM2015) at St Petersburg, July 8-10, 2015.

Problem B12: Corresponding Problem of Theorem B12.
Consider the NTU cooperative stochastic dynamic game with initial state x]. The

state space of the game is X € R™ and the state dynamics of the game is characterized
by the stochastic difference equation:

X1 = T (% U U, ) + G (%) 6,

for ke{l,2,---,T}=x and x, =X/,

where u, € R™ is the control vector of player i at stage k, and x, € X is the state of
the game and 4, is a set of independent random variable. The payoff that player i
seeks to maximize is

.
E@,Hzm@r{ Z; gig[Xg, u;,ug,---,ug, X§+1] + qi (XT+1) } )

for ie{1,2,---,n}z§N,

where q'(x;,,) is the terminal payoff that player i will received in stage T +1, and

Eyo,..0 1S the expectation operation with respect to the statistics of 6,,6,,---,0; .

6.0,

The payoffs of the players are not transferable. The payoffs of the players are
not transferable. The players agree to use a set of payoff weights
{a, =& .é;,---,4]), for k ex} for joint maximization of the expected weighted

joint payoff so that the imputation &'(k,x;) for player i e N in stage k e & along the

cooperative trajectory {xk }Ll can be achieved.

Theorem B13. Hamilton-Jacobi-Bellman Equations for Dynamic Games with

Durable Controls
Let V'(k,x;u, ) be the feedback Nash equilibrium payoff of player i in the
noncooperative game (3.1)-(3.2), then the function V'(k,x;u, ) satisfies the following
recursive equations:
VT +1,%Uqr) = Gra(GUry )
LHT

V‘(k,X:uf)=m@X{ N CATRTARRHTHS

. P ) PR S e
+VIK+1, £ (XU, U, uk—)iuIL’uk—lm(k—l)—!g(kﬂ)— }'

for ke{l,2,---, T} andieN,

where u, = (u;*,u;%,---,u; ") are the corresponding Nash equilibrium strategies,
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() i-1 i

U = U T )

U = U a7 u  u e u™M) and

u;’i‘ﬁ(k_l)_ are the elements in the intersection of the set of controls uz:‘_l)_ and the set

of controls u,". =

References: D.W.K. Yeung, L.A. Petrosyan (2020): Cooperative Dynamic Games
with Durable Controls: Theory and Application, Dynamic Games and Applications,
D0i:10.1007/s13235-019-00336-w.

9(2), 550-567, 2019, https://doi.org/10.1007/s13235-018-0266-6.

D.W.K. Yeung, L.A. Petrosyan (2019): Cooperative Dynamic Games with Control
Lags, Dynamic Games and Applications, 9(2), 550-567,
https://doi.org/10.1007/s13235-018-0266-6.

Theorem B14. Subgame-consistent PDP for Cooperative Dynamic Games with
Durable Controls

The agreed-upon imputation &(k,x;;u, ), for k e{1,2,---,T} along the cooperative

trajectory {x; }Ll, can be realized by a payment

By (X ;Uy_) { E' (K, XUy ) —éi( K+ f (Uil ) $Uge J }

given to player ie N at stage k e{L,2,---,T}. [
References: D.W.K. Yeung, L.A. Petrosyan (2020): Cooperative Dynamic Games
with Durable Controls: Theory and Application, Dynamic Games and Applications,
D0i:10.1007/s13235-019-00336-w.

9(2), 550-567, 2019, https://doi.org/10.1007/s13235-018-0266-6.

D.W.K. Yeung, L.A. Petrosyan (2019): Cooperative Dynamic Games with Control
Lags, Dynamic Games and Applications, 9(2), 550-567,
https://doi.org/10.1007/s13235-018-0266-6.

Part C: Identities and Equations in Economics

C1. Inter-temporal Roy’s Identity
8V[(\N[0, Prs Prygses pT) ;8V((\N[O, Prs Prigsy pT)
opy oW,
= -+ "ol (W, P, Prgr s Pr);
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or in an alternative form
avﬁ(\Nzo’ Prv Priaros pT)
ap;
E—gprf(VVho, Prs Proas s Pr) s
for ¢e{1,2,---, T}, hef{l,/+1,---, T} and je{l,2,---,n},
where

th(VVhO: Prs Priass pT)
W,

. ¢h
- 5k+1

W, =W€0 ,
Wrz0+1 =1+ r)(\Nfo —P,P)+Y, 1,
W/,O+2 =1+ r)(\NrErl ~Pra®ia) +Yoia

Wy =@+ )W,y — g ) +Y, - u
References: D.W.K. Yeung: Dynamic Consumer Theory — A Premier Treatise with
Stochastic Dynamic Slutsky Equations, Nova Science Publishers, New York, 2015.
D.W.K. Yeung: Optimal Consumption under an Uncertain Inter-temporal Budget:
Stochastic Dynamic Slutsky Equations, Vestnik St Petersburg University:
Mathematics (Springer), Vol. 10, 2013, pp.121-141

Problem C1: Corresponding Problem of Theorem C1.
The inter-temporal Roy’s identity is derived from the consumer problem in which the
consumer maximizes his inter-temporal utility

:
UR0G X, X) D 55U (Ko X X
k=2

T T
=u' (%) + D Gu (%) = D 6u (%)
k=2 k=1
subject to the budget constraint characterized by the wealth dynamics
7Tk Tk
Wk+l :Wk _Z pI?X:_'_r(VVk _Z pEX:)'i_YKA, Wl :Wlo,
h=1 h=1

where
X, = (X, XZ,---,%*) is the vector of quantities of goods consumed in period k ,

p. =(ps, pZ,-++, pi¥) is price vector, r is the interest rate, Y, is the income that the
k

consumer will receive in period k , 5} :[Hﬂcj is the discount factor with £ being
c=2

the consumer’s subjective one-period discount factor for the duration from period
7—1 to period z, B, =1 for the discount factor in the initial period 1 and

k k
55 :(HﬂcJ: S5, :[HﬂcJ. The period k utility function u*(xt,x2,---,x™) is
c=1 c=2

continuously differentiable and quasi-concave yielding convex level (indifference)
curves. The time preference factor is embodied in the utility function. The time
preference factor is embodied in the utility function. The amount of unconsumed

wealth W, — p,x, in period k will generate an interest income r(W, —p,X,) in
period k +1.

19




In addition, v'(W?,p,,p,,;,-:+ Py) is the intertemporal indirect utility at

period 7, and @) (W2, p,, Pp..,-+- P;) is the ordinary demand function of commodity
j inperiod h.

C2. Inter-temporal Roy’s Identity under Stochastic Income

8V((\Né,0,pe,pé+l,-~~,pT) aV((\N/ N N T pr)
op) oW,
E_(Pfj(\N/O' Py Prgsss Pr) s for je{l2,-n,};
8\/((\Nzovapz+1’”'va) ov' (W,,p/,pm, -, Pr)

j 0
ap; W,
My - My - m, - av (\N91(+19J/+2 glh p)
= Sk ks 3k o)
- /+1 1+2 h (+1 0{1«319);12 ghlh
Jea=l jra=l in=t aWh s
9]%+19J/+2 glh —(h—(’,)

X

Wf +1gWi+2 Wh-1
My M2 my h 005 O
WD R W V" (W, . P)
r+1 (+2 +1 oW1gWis2 . gWh-1
W,y =1 W, ,=1 w, =1 aWh 1 Y2 h-1

for ée{lz---T}he{£+l£+2-~-T}and je{L2,---,n},

2., Apliv2 . pih
and v (\N"“ll"“fz ", p) is the short form for v (\NH”“ O Dy P Pr) s

where
W, =W0

(+111 =(1+ r)[\Nﬂ p((”f(vv/or p)]+ H/jﬁl '
W€+f£1 /fz - (1+ r)[\NV p(+1¢/+1(vvé+1 ’ p)] + 9/14622 ]

Jf+191(+2 QJT -1

W S @)W p g W v 0
References: D.W.K. Yeung: Dynamic Consumer Theory — A Premier Treatise with
Stochastic Dynamic Slutsky Equations, Nova Science Publishers, New York, 2015.
D.W.K. Yeung: Optimal Consumption under an Uncertain Inter-temporal Budget:
Stochastic Dynamic Slutsky Equations, Vestnik St Petersburg University:
Mathematics (Springer), Vol. 10, 2013, pp.121-141.

Problem C2: Corresponding Problem of Theorem C2.

The inter-temporal Roy’s identity under stochastic income is derived from the
consumer problem in which the consumer maximizes his expected inter-temporal
utility

92 O3 { Zé‘kuk(xk’xk’ ) ) } 0,03, { Zékuk(xk }
subject to the budget constraint characterized by the stochastic wealth dynamics

Wea =@+1W, = pX )+ 6,1, W, :Wlol
where
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6, is the random income that the consumer will receive in period k ; and 6, , for
ke{2,---,T}, is a set of statistically independent random variables, and E, , , is
the expectation operation with respect to the statistics of 6,,6,,---,6; . The random
variable @, has a non-negative range {&;,67,---,6/*} with corresponding
probabilities {4, 22,---, 47}, for ke{2,---, T}.

C3. Inter-temporal Roy’s Identity under Stochastic Life-span

8V[(\N[0, Prs Proares pT) ;8V((\N[O, Py Prigrs pT)
opy ' ER

=—(1+ r)i(h%)(ﬁhj (W Prs Py Pr) s
or in an alternatively form:
avﬁ(\Nzo’ Prs Praases pT) . sh avh(\Nho’ Py Phoas s pT)
op; o oW,

V¢

Nngh

¢

@f(VVhO, Prs Praaros pT);
Ve

Il M—'

[

/
for (e{l2,---,T}he{l,/+1--- T} and je{l2,---,n},
where

W, =Wfo,
W¢O+1 =1+ r)(vvffo —P,@)+Y, 1,
W/,(iz =1+ r)(\NzOA ~Pra®?) Y0

Wy =@+ )W, — Ppayi) +Ys - u
References: D.W.K. Yeung: Dynamic Consumer Theory — A Premier Treatise with
Stochastic Dynamic Slutsky Equations, Nova Science Publishers, New York, 2015.
D.W.K. Yeung: Optimal Consumption under Uncertainties: Random Horizon
Stochastic Dynamic Roy’s Identity and Slutsky Equation, Applied Mathematics, Vol.5,
2014, pp.263-284.

Problem C3: Corresponding Problem of Theorem C3.
The inter-temporal Roy’s identity under stochastic life-span is derived from the

consumer problem in which the consumer’s life-span involves T periods where T is
a random variable with range {,2,---,T} and corresponding probabilities

{r.,7,,--,7+}. Conditional upon the reaching of period z, the probability of the
consumer’s life-span would last up to periods 7,7 +1, ---,T becomes respectively

}/r 7/r+1 . J/T
T 1T H T .
Dre Xre e
(=t =t =t

The consumer maximizes his expected inter-temporal utility
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T T
ny Zalkuk (%)
T=1 k=1
subject to the budget constraint characterized by the wealth dynamics
W, =W, Zpkxk +r(W, _ZpEXE)"'qu’ W, =W,
h=1

where
r is the interest rate, Y, is the income that the consumer will receive in period k .

CA4. Inter-temporal Roy’s Identity under Stochastic Income and Life-span

avf(vvéoipwptﬁlu"'apT) aV((VV[ ,p/,p/+1, : 1p-|-)
op; oW,
E_(Pfj(\N/O' Py Prgsss Pr), for je{l2,---,n,},
8V€(\N[°,p[,pm,---,pT) 5’V(W,,p€,p“1, ' ’pT)
Py ER

Jt+1 JHZ ih
Mgy My, My th 9 Oriz” 0 , )

i e i gh P) « \noiitoiis? i —(h-1)
A DA DA Ol o A O p) L)
in=1 h . ’

j/:+1 =1 jt‘+2 =1

gV gWix2 0Wh

My my,p My, h 41 V2
ﬂWm Zﬂwmz . Zﬂn’h 5h 6V (Vvh ' p) .
7+1 7+2 /41 92 | gWh ’
1_1 W,.o =1 W, -1 6Wh 41 Yis2 h

or in an alternative form:
8V((\N[O, PrsPragsms pT)

ops
>
m, m., my, ) 8Vh(\/\/5‘]+{1+19f]32 th p) j ) .
_ =h " e h h ] K 0’1+19’Ji+2_,,91h .
= Zﬂm ZA’/LS zﬂ"r{h 5/,’+l plisigis2 gl (Dh (\Nh B " ’ p) ’
Z}/C Jf+1_l J”Z =1 jh:l 6Wh B "
&=0
for 1e{1,2,--- T} he{f+1,¢+2,---, T} and ke{l,2,---,n, },
9]/+19](+2

and v" (W94 0) s the short form for v (\Ng"*(flefj*/gz A D Pras s Pr).s
where
W, =W,

(4—1{1 =1+ I‘)[VV, p((”f(vv/or p)]+ ‘g/jﬁl '
6]/+19]/+2

W57 =1+ r)[Wa i pe+1¢/+1(\/\/é+/1+l . P)] + ggjfzz '

WTHI'gle};;%-e” (1+r)[vv'9fjif16’fi§z i Dr 1(\/\/9311*193152 5””)] 6. m
References: D.W.K. Yeung: Dynamic Consumer Theory — A Premier Treatise with
Stochastic Dynamic Slutsky Equations, Nova Science Publishers, New York, 2015.
D.W.K. Yeung: Optimal Consumption under Uncertainties: Random Horizon
Stochastic Dynamic Roy’s ldentity and Slutsky Equation, Applied Mathematics, Vol.5,

22




| 2014, pp.263-284.

Problem C4: Corresponding Problem of Theorem C4.
The inter-temporal Roy’s identity under stochastic income and life-span is derived

from the consumer problem in which the consumer’s life-span involves T periods
where T is a random variable with range {L,2,---,T} and corresponding probabilities

{r.,7,,--,7+}. Conditional upon the reaching of period z, the probability of the
consumer’s life-span would last up to periods 7,7 +1, ---,T becomes respectively

}/r 7/r+1 7/T

) T .
27: Z% ;74
The consumer maX|m|zes hIS expected inter-temporal utility
9293 { Z?’T Z5ku (%) }v

subject to the budget constralnt characterized by the wealth dynamics

Wi, =W, Zpkxk"'r(wk Zpkxk)+9k+l’ W, =W,

where
6, is the random income that the consumer will receive in period k; and 6, , for
ke{2,---,T}, is a set of statistically independent random variables, and E, , , is

the expectation operation with respect to the statistics of 6,,6,,---,6; . The random
variable 4, has a non-negative range {&;,67,---,6/*} with corresponding

probabilities {4, 2,---, 47}, for ke{2,---, T}.

C5. Inter-temporal Roy’s Identity under Stochastic Preferences

v'IOWS, p) v WY, p)

=" W?, p), for jefl2,--,n},

op, oW,
oy ‘v) » m,.
W) W) %
0 +! (+
aph aW/ U=l V2=l
h(oy) UpOpyg Uy
< v (W p)
h h ! (vp)k (Vps1-Un —(h=0)
. Zpﬁh Opa oo (Dhuh (VVhU vt p) (L+)
aW (V1" "Uha
vy =1 h
. My - Mo - h avh(wh) (W @@ Tpgy , p) .
- prrl prrz Zp “’1 @ Wy Thy !
@, =1 @) =1 @, =1 6Wh

or in an alternative form
aV/(U’) (\NZ , p) My Mo

Vs Uz ..
6W0 zp/ﬁ zp/,++2 a
l V=1 V=1
Mt " avh(uh)(VVU/Ull “Ung p) -
DI oo @0
Upap =1 aWh h )
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for ¢e{l2,---, T}, he{t+1,¢+2,---, T}, ke{l,2,---,n,} and v, e{L1,2,---,M,},
where
W, =W,
W =1+ r)[\Nf P,@ (Uﬁ)(vvfoa PI+Y,.1,
W5 =@+ )W — p/+1(0f($(1+1)(vvi+1' P +Y, .5,
if preference is u™*(x,,,) in period ¢ +1;
W5 = (L 1) W25 = Pyl W25, p)T+Y,,
if preference is u ") (x,,,) in period (+2;

WTU/;xUHl'“UT—l — (1+ r)[\NTUi?A'”UT 2 pT_1¢_I(_LiTll)(\/VUfUK+1 Uy 2)]
if preference is u' ) (x,_,) in period T —1;

W7 = (L )M = gy W )] 4 Yy .

References: D.W.K. Yeung: Dynamic Consumer Theory A Premier Treatise with
Stochastic Dynamic Slutsky Equations, Nova Science Publishers, New York, 2015.
D.W.K. Yeung: Random Horizon Stocahstic dynamic Slutsky Equation under
Preference Uncertainty, Applied Mathematical Sciences, Vol. 8, 2014, pp.7311-7340.

Problem C5: Corresponding Problem of Theorem C5.
The inter-temporal Roy’s identity under stochastic preferences is derived from the
consumer problem in which the preference or utility function of the consumer in period

1 is known to be u*®(x ). His future preferences are not known with certainty. In
particular, his utility function in period k €{2,3,---,T} is known to be u*“’(x,) with
probability o« for v, e{1,2,---,m,}. We use v, to denote the random variable with

range v, €{1,2,---,M } and corresponding probabilities {p;, o7, -+, pi* }. The discount

factor is embodied in the utility function.
The consumer maximizes his expected inter-temporal utility

T my
Es, 0, T{ Z prkékuk(uk)(x )}

=1 y=1

T my
:E02,93,-~,5T{ ul(l)(xl)"‘z prk@kuk(uk)(xk) }

k=2 v =1
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C6. Inter-temporal Roy’s Identity under Stochastic Life-span and Preferences
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Problem C6: Corresponding Problem of Theorem C6.
The inter-temporal Roy’s identity under stochastic life-span and preferences is

derived from the consumer problem in which the consumer’s life-span involves T
periods where T is a random variable with range {,2,---,T} and corresponding
probabilities {y,,7,,---,7:} . Conditional upon the reaching of period z , the
probability of the consumer’s life-span would last up to periods z,z+1, ---,T
becomes respectively:
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The preference or ut|I|ty function of the consumer in period 1 is known to be
u'®(x,). His future preferences are not known with certainty. In particular, his utility
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function in period k €{2,3,---, T} is known to be u*“’(x,) with probability p/* for
v, €{L,2,---,m, } if he survives in period k. We use v, to denote the random variable

with range v, €{L,2,---,M,} and corresponding probabilities {o;, p7,---, pi*}. The

discount factor is embodied in the utility function.
The consumer maximizes his expected inter-temporal utility
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subject to the budget constraint characterized by the wealth dynamics

W, =W, Zpkxk"'r(wk Zpkxk)+Yk+1' W, =W,

C7. Inter-temporal Roy’s Identity under Stochastic Income and Preferences
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Problem C7: Corresponding Problem of Theorem C7.
The inter-temporal Roy’s identity under stochastic income and preferences is derived
from the consumer problem in which the preference or utility function of the consumer

in period 1 is known to be u'®(x, ). His future preferences are not known with
certainty. In particular, his utility function in period k €{2,3,---,T} is known to be
u*@(x,) with probability p* for v, e{L,2,---,mM }. We use 0, to denote the random
variable with range v, €{1,2,---,m, } and corresponding probabilities {o;, p7,--, pi**}.

The discount factor is embodied in the utility function.
The consumer maximizes his expected inter-temporal utility
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subject to the budget constraint characterized by the wealth dynamic
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where 1 1
6, is the random income that the consumer will receive in period k ; and 6, , for
ke{2,---,T}, is a set of statistically independent random variables, and E, , , is
the expectation operation with respect to the statistics of 6,,6,,---,6; . The random
variable @, has a non-negative range {&;,67,---,6/*} with corresponding
probabilities {4, 22,---, 47}, for ke{2,---, T}.

C8. Inter-temporal Roy’s Identity under Stochastic Income, Life-span
and Preferences
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Problem C8: Corresponding Problem of Theorem C8.
The inter-temporal Roy’s identity under stochastic income, life-span and preferences

is derived from the consumer problem in which the consumer’s life-span involves T
periods where T is a random variable with range {L,2,---,T} and corresponding
probabilities {y,,7,,---,7;} . Conditional upon the reaching of period z , the
probability of the consumer’s life-span would last up to periods z,z+1, ---,T
becomes respectively:

}/r 774—1 o ]/T
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DV DT e
¢=r = =

The preference or utility function of the consumer in period 1 is known to be
u'®(x,) . His future preferences are not known with certainty. In particular, his utility

function in period k €{2,3,---, T} is known to be u*“*’(x,) with probability p/* for
v, €{L2,---,m, } if he survives in period k . We use v, to denote the random variable

with range v, €{L,2,---,M,} and corresponding probabilities {o;, p7,---, pi*}. The

discount factor is embodied in the utility function.

The consumer maximizes his expected inter-temporal utility
7

T my
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subject to the budget constraint characterized by the wealth dynamics

Wiy =W, _Z pl?xl? +r(\Nk _Z pEXE)"'eku' W, :Wlo'

h=1 h=1

where
6, is the random income that the consumer will receive in period k ; and 6, , for
ke{2,---,T}, is a set of statistically independent random variables, and E, , , is
the expectation operation with respect to the statistics of 6,,6;,---,6; . The random
variable 4, has a non-negative range {&;,67,---,6/*} with corresponding
probabilities {1, 22,---, A}, for ke{2,---,T}.

C9. Dynamic Slutsky Equation
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D.W.K. Yeung: Optimal Consumption under an Uncertain Inter-temporal Budget:
Stochastic Dynamic Slutsky Equations, Vestnik St Petersburg University:
Mathematics (Springer), Vol. 10, 2013, pp.121-141.

Problem C9: Corresponding Problem of Theorem C9.
The dynamic Slutsky equation is derived from the consumer problem in which the
consumer maximizes his inter-temporal utility

T
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subject to the budget constraint characterized by the wealth dynamics
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where
X, = (X, XZ,---, %) is the vector of quantities of goods consumed in period k ,

P =(ps, pZ,-++, pi¥) is price vector, r is the interest rate, Y, is the income that the
k

consumer will receive in period k , 55 =[Hﬁcj is the discount factor with 3. being
c=2

the consumer’s subjective one-period discount factor for the duration from period
7—1 to period r, fB, =1 for the discount factor in the initial period 1 and

k k
oF :(HﬂcJ: 5, =[Hﬂcj. The period k utility function u*(x{,x?,---,x() is
c=1 c=2

continuously differentiable and quasi-concave yielding convex level (indifference)
curves. The time preference factor is embodied in the utility function. The time
preference factor is embodied in the utility function. The amount of unconsumed

wealth W, — p,x, in period k will generate an interest income r(W, —p,X,) in
period k +1.

In addition ¢! W/, p,,p,.,, - P;) is the ordinary demand function of
commodity h in period /7, and v (\7‘,{“0, P, P,y Pr) IS the wealth compensated
demand function of commodity h in period /.

C10. Dynamic Slutsky Equation under Stochastic Income
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Problem C10: Corresponding Problem of Theorem C10.
The dynamic Slutsky equation under stochastic income is derived from the consumer
problem in which the consumer maximizes his expected inter-temporal utility

T T
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k=1 k=1
subject to the budget constraint characterized by the stochastic wealth dynamics
Wy =@+ )W, — pX) +6 .1, W, =W,

where

6, is the random income that the consumer will receive in period k ; and 6, , for
ke{2,---,T}, is a set of statistically independent random variables, and E, , , is
the expectation operation with respect to the statistics of 6,,6,,---,6; . The random
variable 4, has a non-negative range {&;,67,---,6/*} with corresponding

probabilities {&., 22,---, 47}, for ke{2,---, T}.

C11. Dynamic Slutsky Equation under Stochastic Life-span
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Problem C11: Corresponding Problem of Theorem C11.
The dynamic Slutsky equation under stochastic life-span is derived from the

consumer problem in which the consumer’s life-span involves T periods where T is
a random variable with range {.,2,---,T} and corresponding probabilities
{r.,7,,--,7+}. Conditional upon the reaching of period z, the probability of the
consumer’s life-span would last up to periods 7,7 +1, ---,T becomes respectively
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The consumer maximizes his expected inter-temporal utility
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subject to the budget constraint characterized by the wealth dynamics
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where
r is the interest rate, Y, is the income that the consumer will receive in period k .

C12. Dynamic Slutsky Equation under Stochastic Income and Life-span
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Stochastic Dynamic Roy’s Identity and Slutsky Equation, Applied Mathematics, Vol.5,
2014, pp.263-284.

Problem C12: Corresponding Problem of Theorem C12.
The dynamic Slutsky equation under stochastic income and life-span is derived from

the consumer problem in which the consumer’s life-span involves T periods where T
is a random variable with range {L2,---,T} and corresponding probabilities

{r.,7,,--,7+}. Conditional upon the reaching of period z, the probability of the
consumer’s life-span would last up to periods 7,7 +1, ---,T becomes respectively
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The consumer maX|m|zes hIS expected inter-temporal utility
o] e TV |

subject to the budget constralnt characterized by the wealth dynamics

Wi, =W, Zpkxk"'r(wk Zpkxk)+9k+l’ W, =W,

where
6, is the random income that the consumer will receive in period k ; and 6, , for

ke{2,---,T}, is a set of statistically independent random variables, and E, , , is

the expectation operation with respect to the statistics of 6,,6,,---,6; . The random
variable @, has a non-negative range {&;,67,---,6/*} with corresponding

probabilities {4, 22,---, 47}, for ke{2,---, T}.

C13. Dynamic Slutsky Equation under Stochastic Preferences

op" "W/, p) _ ay" "W p) _ 9g" " (W, p)

i 0
ap api/, 6Wo @, (vaz ! p) '
(U/)h(VV/ ! p) a'//(U )h(VV/,O' p) a(D(U})h(WZO' p) %pu‘ﬂ miipufu
o op¢ oW’ Pt it

(v )k kU/Uﬁ+1"'Uk—1 p)
! i A L T -(r-k
Zp f+1 6W UyDpyg - Ugq (Dll(k (VVkU v 1 p) (l+ r) ( )

v =1
My > My, ” a\/h(wh)(\Nw%le'”wh—l’ p)
+{ mfzﬂlzf)/zﬁl mglzf)zﬁ : ;1:0 f+1 athr:wm---wm ]
for tefl,2,--- T}, ke{l+1L,0+2,---, T}, i, €{L,2,---,n.}, hi, e{L,2,---,n,} and
v, e{12,---,m,}. [

References: D.W.K. Yeung: Dynamic Consumer Theory — A Premier Treatise with
Stochastic Dynamic Slutsky Equations, Nova Science Publishers, New York, 2015.
D.W.K. Yeung: Random Horizon Stocahstic dynamic Slutsky Equation under
Preference Uncertainty, Applied Mathematical Sciences, Vol. 8, 2014, pp.7311-7340.

33




Problem C13: Corresponding Problem of Theorem C13.
The dynamic Slutsky equation under stochastic preferences is derived from the
consumer problem in which the preference or utility function of the consumer in period

1 is known to be u*®(x ). His future preferences are not known with certainty. In
particular, his utility function in period k €{2,3,---,T} is known to be u*“’(x,) with
probability p« for v, e{1,2,---,m, }. We use v, to denote the random variable with

range v, €{1,2,---,M } and corresponding probabilities {p;, o7, -+, pi*}. The discount

factor is embodied in the utility function.
The consumer maximizes his expected inter-temporal utility
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subject to the budget constraint characterized by the wealth dynamic
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C14. Dynamic Slutsky Equation under Stochastic Life-span and Preferences
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D.W.K. Yeung: Random Horizon Stocahstic dynamic Slutsky Equation under
Preference Uncertainty, Applied Mathematical Sciences, Vol. 8, 2014, pp.7311-7340.

Problem C14: Corresponding Problem of Theorem C14.
The dynamic Slutsky equation under stochastic life-span and preferences is derived

from the consumer problem in which the consumer’s life-span involves T periods
where T is a random variable with range {1,2,---, T} and corresponding probabilities
{r.,7,,---,7;+}. Conditional upon the reaching of period 7, the probability of the
consumer’s life-span would last up to periods 7,7 +1, ---, T becomes respectively:

34




}/r 7r+l 7/T

’ T .

274 274 ;74
The preference or utlllty function of the consumer in period 1 is known to be
u'®(x, ). His future preferences are not known with certainty. In particular, his utility
function in period k €{2,3,---, T} is known to be u**’(x,) with probability p/* for

v, €{L,2,---,m, } if he survives in period k. We use v, to denote the random variable
with range v, €{L,2,---,M,} and corresponding probabilities {o;, p7,---, pi*}. The

discount factor is embodied in the utility function.
The consumer maximizes his expected inter-temporal utility
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C15. Dynamic Slutsky Equation under Stochastic Income and Preferences

op" "W/, p) _ ay" "W, p) _ 9g" " (W, p)

i 0
) 0 o' W, p),
op;’ op, ow,
(u )h (,)h A0 (0)h ApsO
WS p) oy "W p) 0l W,, p)
iy 0
ap op, ow,
My Mo m_ My My,p
Jia Jis2 Jk Vr V2 |,
x Zﬂ’(’,:l zﬂ’/f—:Z Zﬂk Zp/fl Zptzfz
Jesa=1 Jo=1 j=1 Uy =1 Uy =1
m, (v )k 01201152 -0 10,0110y
.. Zk: 3 5k 8\/ (Vv ! p) [ (Vv 9/&119»{%2 glk WOV Uk )
Pk /+1 lrsigie2 gk, by, ¢k ! p
= awk 41 Y2 k UV k-1
(L+r) R
My, my, My Mo
. Wy Wi |, W [cpa) Tip .
SIS W Zﬂ« 2P 2Pl
W=l w,,,=1 @ =1 @yp=1
m, oyn@n) (VV O 0)5% O m @ g m p)
. @y, 5h !
whz_lph t+1 oW, 0057 O @ @y '
B h

for tefl,2,--- T}, ke{l+1L,0+2,---, T}, i, €{L,2,---,n}, hji, e{L,2,---,n,} and
v, e{12,---,m,}. n
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Stochastic Dynamic Slutsky Equations, Nova Science Publishers, New York, 2015.
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Problem C15: Corresponding Problem of Theorem C15.
The dynamic Slutsky equation under stochastic income and preferences is derived
from the consumer problem in which the preference or utility function of the consumer

in period 1 is known to be u'®(x ). His future preferences are not known with
certainty. In particular, his utility function in period k €{2,3,---,T} is known to be
u ™ (x,) with probability py* for v, e{L,2,---,M }. We use o, to denote the random
variable with range v, €{1,2,---,m, } and corresponding probabilities {o;, p7,--, o}

The discount factor is embodied in the utility function.
The consumer maximizes his expected inter-temporal utility
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subject to the budget constraint characterized by the wealth dynamic

Wi =W, Zpkxk +r(W, Zpkxk)+9k+1' W, =W’
where
6, is the random income that the consumer will receive in period k ; and 6, , for
ke{2,---,T}, is a set of statistically independent random variables, and E, , , is
the expectation operation with respect to the statistics of 6,,6,,---,6; . The random
variable 4, has a non-negative range {&;,67,---,6/*} with corresponding

probabilities {4, 2,---, 47}, for ke{2,---, T}.

C16. Dynamic Slutsky Equation under Stochastic Income, Life-span
and Preferences
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D.W.K. Yeung: Random Horizon Stocahstic dynamic Slutsky Equation under
Preference Uncertainty, Applied Mathematical Sciences, Vol. 8, 2014, pp.7311-7340.

Problem C16: Corresponding Problem of Theorem C16.
The dynamic Slutsky equation under stochastic income, life-span and preferences is

derived from the consumer problem in which the consumer’s life-span involves T
periods where T is a random variable with range {L,2,---,T} and corresponding
probabilities {y,,7,,---,7:} . Conditional upon the reaching of period z , the
probability of the consumer’s life-span would last up to periods z,z+1, ---,T
becomes respectively:
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The preference or utility function of the consumer in period 1 is known to be
u'®(x, ). His future preferences are not known with certainty. In particular, his utility

function in period k €{2,3,---,T} is known to be u*“’(x,) with probability p* for
v, €{L,2,---,m, } if he survives in period k . We use o, to denote the random variable

with range v, €{L,2,---,M,} and corresponding probabilities {o;, p7,---, pi*}. The

discount factor is embodied in the utility function.

The consumer maximizes his expected inter-temporal utility
7
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where
6, is the random income that the consumer will receive in period k ; and 6, , for
ke{2,---,T}, is a set of statistically independent random variables, and E, ,

Oy
the expectation operation with respect to the statistics of 6,,6,,---,6; . The random

is

variable 4, has a non-negative range {6;,67,---,6/*} with corresponding
probabilities {4, 22,---, 47}, for ke{2,---, T}.
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D. Biological Population Density Functions

D1. Stationary Density Function of Generalized Stochastic Food-chain of the
Lotka-Volterra-Yeung Type

The function

w(N) = mf[Niexp[[zA InN, —2F,(InN,) + 2F, (0)]/ 7]
gives the stationary probability density of species N,, N,,..., N
Lotka-Volterra-Yeung type of stochastic food-chain:
AN, (1) = [N, (1) =B, N, (8) £ (N, (£) = voN, () £, (N, ()] dit + o by N, (£)dz(t),
dN, (t) =[a, N, (t) =, N, (1) f, (N, (1)) —V, N, (t) f; (N5 (1))
+V,N, (1) f, (N, ())]dt +o/b, N, (t)dz(t)
dN, (t) =[5 N5 (£) =, N4 (1) 5 (N5 (1)) — V3N, (1) T, (N, (1))

+V,N, (t) f, (N, (t))]dt + /b, N, (t)dz(t),

. of the generalized

dN,,_; (t) =[er, N,y () =D N (0 F (N (8) =V NG (8) F (NG (D)
+V, N, () F, (N, ,t)]dt +o /b, N, (t)dz(t),
dN, (t) =[N, () —b, N, () f, (N, () +Vv, N, @) f, (N, ,(t)]dt
+o.fo, N, (t)dz(t),
where N, (t) is the population level of the species in the i" trophic level at time t;
v, for ie[L2,---,n—1] are positive constants, b, is positive and b, for i€[2,3,---,n]
are nonnegative constants;
a, >0, and ¢; for i€[2,3,---,n] are constants with ¢; being positive when b, >0
and negative when b, =0;

f,(0)=0 and f,(N;)>0 for positive values of N,, and f (N,) is a continuous
differentiable and monotonically increasing in N, , and f,(e°) is an integrable

function yielding J? f.(e®)ds =F.(x,)—-F(0), for i=12,...,n;

and
AL A, -, A satisfies
b A +V,A = ),

—V,A + DA, +V,A = 0,,
—V, A, + A + VA, = 0y,

VoAb ALY LA =,
_Vn—lAn—l +bnAn =w,.

References: D.W.K. Yeung: An Explicit Density Function for a Generalized
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Stochastic Food-chain of the Lotka-Volterra-Yeung Type, Stochastic Analysis and
Applications, Vol. 27, 2009, pp.16-23.

Note:
Using the generalized density function D1 one can also obtain the stationary density
function of the stochastic Lotka-Volterra food-chain in Yeung (1988):

dN, (t) = [a,N; (£) ~bN7 (£) - ¢,N, (©)(N, ()] dt + &N, (t)dz(t),
AN, (1) =[-a N, (©) = &N, (©)(N,,, (0) + 7N, ON, (D]t

for i=2,3,---,n—1,
dN, (t) =[-a,N,(t) + »,N, (OON,_, ()]dt,

where N, (t) is the population level of the species in the i" trophic level at time t,
z(t) is a standard Wiener process, with E(dz, ) =0, E(dz’) = dt and E(dtdz) =0, b,
a, for 1€[12,3---,n] and c, for i€[12,3,---,n-1] and y, for ie€[2,3,---,n] are
positive constants, and ¢ is a constant.

Similarly, using the generalized density function D1 one can also obtain the
stationary density function of the prey species N, and the predator species N, of the
predator prey system in Yeung (1986):

dN, (1) = [,N, (t) ~BNZ (1) — ¢, N, () (N, ()] dt + &N, ()dlz(t)
AN, (1) = [-a,N, (t) + /N, (ON, (O]t

where a,, a,, b, y and & are positive constants, and z(t) is a standard Wiener
process, with E(dz, ) =0, E(dz’) = dt.

References: D.W.K. Yeung: Exact Solutions for Steady-State Probability Distribution
of a Simple Stochastic Lotka Volterra Food Chain. Stochastic Analysis and
Applications, Vol. VI, 1988, pp. 103-116.

D.W.K. Yeung: Optimal Management of Replenishable Resources in a Predator-Prey
System with Randomly Fluctuating Population. Mathematical Biosciences, Vol. 78,
1986, pp. 91-105.

E. Number Theory

E1. The Number of Embedded Coalitions
The number of embedded coalitions in a n -person game is:

Y(l):i[ﬂ:(azl, for n=1;

vo-3[)-(2)(2) -5 o
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n-1 n t-1 n-1 n
Y(n):Z( j{ZY(k))+Z( j for n>3. n
AN A= o\ t
Problem EL1: Corresponding Problem of Theorem E1.

Let N={L2,---,n} be a finite set of n players in a n—person game. The subsets of
N are coalitions. A partition A is formed by disjoint non-empty subsets of N
representing a way that these n players are joined. Given a partition A and a
coalition S = N, the pair (S,A) is called an embedded coalition, that is the coalition
S embedded in partition A. The Bell (1934) number, denoted by £(n), gives the

number of partitions in a n—person game. The number of embedded coalitions in a
partition is the number of subsets formed in that partition. The total number of
embedded coalitions Y(n) in a n— person game is the sum of the numbers of

embedded coalitions in the £(n) partitions of N .

References: D.W.K. Yeung: Recursive Sequences Identifying the Number of
Embedded Coalitions, International Game Theory Review, Vol. 10(1), 2008, pp.129-
136.

E. T. Bell [1934] Exponential numbers, American Mathematical Monthly 41, 411-
419, 1934.

E2. The Number of Embedded Coalitions where the position
of the individual player counts

The number of embedded coalitions in a n-person game where the position of the
individual player counts is:

@) =1i[1J =1, for n=1;
P(2) = 22[ J= forn=2;

oo SRS s

References: D.W.K. Yeung, E.L.H. Ku and P.M. Yeung: A Recursive Sequence for the
Number of Positioned Partitions, International Journal of Algebra, Vol. 2, 2008,
pp.181-185.

Problem E2: Corresponding Problem of Theorem E2.

Consider the problem in Problem E1 in which the position of the individual player in
a embedded coalition counts. The total number of embedded coalitions ¢(n) in a is
the sum of the numbers of embedded coalitions with the positions of individual
players count in the S(n) partitions of N .
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